משתמש:אור שחף/133 - הרצאה/22.2.11

מתוך Math-Wiki
< משתמש:אור שחף‏ | 133 - הרצאה
גרסה מ־15:15, 22 בפברואר 2011 מאת אור שחף (שיחה | תרומות) (יצירת דף עם התוכן "לאחר שהוכחנו את משפט 2 בהרצאה הקודמת נקבל: '''מסקנה:''' נקח f כנ"ל ונניח ש-P ו-Q הן שתי חלוקות כלש...")
(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)

לאחר שהוכחנו את משפט 2 בהרצאה הקודמת נקבל:

מסקנה: נקח f כנ"ל ונניח ש-P ו-Q הן שתי חלוקות כלשהן של [math]\displaystyle{ [a,b] }[/math]. אזי [math]\displaystyle{ \underline S(f,P)\le\overline S(f,Q) }[/math]. הוכחה: נבנה עידון משותף

ז"א [math]\displaystyle{ R=P\cup Q }[/math]. לפי משפט 2 מתקיים [math]\displaystyle{ \underline S(f,P)\le\underline S(f,R)\le \overline S(f,R)\le\overline S(f,Q) }[/math]. [math]\displaystyle{ \blacksquare }[/math]

מסקנה נוספת: עבור f כנ"ל מתקיים [math]\displaystyle{ \underline\int_a^b f(x)dx\le\overline{\int}_a^b f(x)dx }[/math]. הוכחה: נקח חלוקה P של [math]\displaystyle{ [a,b] }[/math]. לפי כל חלוקה Q של [math]\displaystyle{ [a,b] }[/math] מסקנה 1 אומרת [math]\displaystyle{ \underline S(f,P)\le\overline S(f,Q) }[/math]. נקבע את P ונקח סופרימום על כל Q ונקבל [math]\displaystyle{ \underline\int_a^b f(x)dx=\sup_Q\underline S(f,Q)\le\overline S(f,P) }[/math].

לבסוף נקח אינפימום על P ונקבל [math]\displaystyle{ \underline\int_a^b f(x)dx=\inf_P\overline S(f,P)=\overline\int_a^b f(x)dx }[/math]. [math]\displaystyle{ \blacksquare }[/math]

משפט 3

תהי f כנ"ל. אזי [math]\displaystyle{ \underline\int_a^b f(x)dx=\lim_{\lambda(P)\to0}\overline S(f,P) }[/math] וכן [math]\displaystyle{ \overline\int_a^b f(x)dx=\lim_{\lambda(P)\to0}\underline S(f,P) }[/math].

הוכחה

הטענה הראשונה אומרת שלכל [math]\displaystyle{ \varepsilon\gt 0 }[/math] קיים [math]\displaystyle{ \delta\gt 0 }[/math] כך שאם [math]\displaystyle{ \lambda(P)\lt \delta }[/math] אז [math]\displaystyle{ 0\le\overline S(f,P)-\overline{\int}_a^b f(x)dx\lt \varepsilon }[/math]. ברור כי אכן מתקיים [math]\displaystyle{ 0\le\overline S(f,P)-\overline{\int}_a^b f(x)dx }[/math]. כעת יהי [math]\displaystyle{ \varepsilon\gt 0 }[/math] נתון. לםי הגדרת האינפימום קיימת חלוקה מסויימת Q של [math]\displaystyle{ [a,b] }[/math] כך ש-[math]\displaystyle{ 0\le\overline S(f,Q)-\overline{\int}_a^b f(x)dx\lt \frac\varepsilon2 }[/math] ונניח של-Q יש r נקודות חלוקה. כעת נניח ש-P חלוקה כלשהי של [math]\displaystyle{ [a,b] }[/math] כך ש-[math]\displaystyle{ \lambda(P)\lt \frac\varepsilon{2r\Omega} }[/math]. כעת נגדיר [math]\displaystyle{ R=P\cup Q }[/math]. כיוון ש-R עידון של Q, [math]\displaystyle{ \overline{\int}_a^b f(x)dx\le\overline S(f,R)\le\overline S(f,Q) }[/math] ונובע ש-[math]\displaystyle{ 0\le\overline S(f,R)-\overline{\int}_a^b f(x)dx\le\overline S(f,Q)-\overline{\int}_a^b f(x)dx\lt \frac\varepsilon2 }[/math]. אבל R התקבלה מ-P ע"י הוספת r נקודות, לכן ע"פ משפט 2 ידוע ש-[math]\displaystyle{ \overline S(f,P)-\overline S(f,R)\le r\lambda(P)\Omega\lt r\Omega\frac\varepsilon{2r\Omega}=\frac\varepsilon2 }[/math]. לכן נוכל להסיק

[math]\displaystyle{ 0\le\overline S(f,P)-\overline{\int}_a^b f(x)dx=\overline S(f,P)-\overline S(f,R)+\overline S(f,R)-\overline{\int}_a^b f(x)dx\lt \frac\varepsilon2+\frac\varepsilon2=\varepsilon }[/math].

ההוכחה לאינטגרל התחתון דומה. [math]\displaystyle{ \blacksquare }[/math]

משפט 4

תהי f כנ"ל. אזי f אינטגרלית ב-[math]\displaystyle{ [a,b] }[/math] אם"ם [math]\displaystyle{ \lim_{\lambda(P)\to0}\overline S(f,P)-\underline S(f,P)=0 }[/math] ואם כן [math]\displaystyle{ \int\limits_a^b f(x)dx=\lim_{\lambda(P)\to0}\overline S(f,P)=\lim_{\lambda(P)\to0}\underline S(f,P) }[/math].

הוכחה

תחילה נניח ש-f אינטגרבילית, ז"א [math]\displaystyle{ \overline{\int}_a^b f(x)dx=\underline\int_a^b f(x)dx }[/math]. לכן, ממשפט 3, [math]\displaystyle{ \lim_{\lambda(P)\to0}\overline S(f,P)=\overline{\int}_a^b f(x)dx=\underline\int_a^b f(x)dx=\lim_{\lambda(P)\to0}\underline S(f,P) }[/math]. ע"פ אריתמטיקה של גבולות [math]\displaystyle{ \lim_{\lambda(P)\to0}\overline S(f,P)-\underline S(f,P)=0 }[/math] וכן [math]\displaystyle{ \lim_{\lambda(P)\to0}\overline S(f,P)=\int_a^b f(x)dx=\lim_{\lambda(P)\to0}\underline S(f,P) }[/math].

עכשיו נניח ש-[math]\displaystyle{ \lim_{\lambda(P)\to0}\overline S(f,P)-\underline S(f,P)=0 }[/math]. אם כן אז ממשפט דרבו [math]\displaystyle{ 0=\lim_{\lambda(P)\to0}\overline S(f,P)-\lim_{\lambda(P)\to0}\underline S(f,P)=\overline{\int}_a^b f(x)dx-\underline\int_a^b f(x)dx }[/math]. ולכן f אינטגרבילית. [math]\displaystyle{ \blacksquare }[/math]

משפט 5

תהי f כנ"ל. אזי f אינטגרבילית ב-[math]\displaystyle{ [a,b] }[/math] אם"ם לכל [math]\displaystyle{ \varepsilon\gt 0 }[/math] קיימת חלוקה P של [math]\displaystyle{ [a,b] }[/math] כך ש-[math]\displaystyle{ \overline S(f,P)-\underline S(f,P)\lt \varepsilon }[/math].

הוכחה

אם נתון ש-f אינטגרבילית אז ממשפט 4 [math]\displaystyle{ \lim_{\lambda(P)\to0}\overline S(f,P)-\underline S(f,P)=0 }[/math]. לכן עבור [math]\displaystyle{ \varepsilon\gt 0 }[/math] קיים [math]\displaystyle{ \delta\gt 0 }[/math] כך שלכל P המקיימת [math]\displaystyle{ \lambda(P)\lt \delta }[/math] מתקיים [math]\displaystyle{ \overline S(f,P)-\underline S(f,P)\lt \varepsilon }[/math].

לצד השני, נניח שלכל [math]\displaystyle{ \varepsilon\gt 0 }[/math] קיימת חלוקה P כך ש-[math]\displaystyle{ \lambda(P)\lt \delta }[/math] מתקיים [math]\displaystyle{ \overline S(f,P)-\underline S(f,P)\lt \varepsilon }[/math]. כידוע, לכל חלוקה P מתקיים [math]\displaystyle{ \underline S(f,P)\le\underline\int_a^b f\le\overline{\int}_a^b f\le\overline S(f,P) }[/math]. לפי הנתון נקבל [math]\displaystyle{ 0\le\overline\int_a^b f\le\underline{\int}_a^b f\lt \varepsilon }[/math]. זה נכון לכל [math]\displaystyle{ \varepsilon\gt 0 }[/math] ולכן [math]\displaystyle{ \overline\int_a^b f\le\underline{\int}_a^b f=0 }[/math], כלומר f אינטגרבילית ב-[math]\displaystyle{ [a,b] }[/math]. [math]\displaystyle{ \blacksquare }[/math]

משפט 6

תהי [math]\displaystyle{ f(x) }[/math] מוגדרת וחסומה ב-[math]\displaystyle{ [a,b] }[/math]. אזי f אינטגרבילית ב-[math]\displaystyle{ [a,b] }[/math].

הוכחה

תחילה נעיר שלפי משפט וירשטרס כל f רציפה ב-[math]\displaystyle{ [a,b] }[/math] חסומה שם. כעת יהי [math]\displaystyle{ \varepsilon\gt 0 }[/math]. כיוון ש-[math]\displaystyle{ f(x) }[/math] רציפה בקטע סגור [math]\displaystyle{ [a,b] }[/math] היא רציפה במ"ש, לכן קיים [math]\displaystyle{ \delta\gt 0 }[/math] כך שאם [math]\displaystyle{ x_1,x_2\in[a,b] }[/math] ו-[math]\displaystyle{ |x_1-x_2|\lt \delta }[/math] אז [math]\displaystyle{ |f(x_1)-f(x_2)|\lt \frac\varepsilon{2(b-a)} }[/math]. כעת תהי P חלוקה כלשהי של [math]\displaystyle{ [a,b] }[/math] כך ש-[math]\displaystyle{ \lambda(P)\lt \delta }[/math]. לפיכך [math]\displaystyle{ \overline S(f,P)-\underline S(f,P)=\sum_{k=1}^n(M_k-m_k)\Delta x_k }[/math] כאשר [math]\displaystyle{ M_k=\sup\{f(x):\ x_{k-1}\le x\le x_k\} }[/math] ו-[math]\displaystyle{ M_k=\inf\{f(x):\ x_{k-1}\le x\le x_k\} }[/math]. אבל מכיוון ש-f רציפה וע"פ המשפט השני של וירשטרס, לכל k קיימים [math]\displaystyle{ y_k,z_k\in[x_{k-1},x_k] }[/math] כך ש-[math]\displaystyle{ f(y_k)=M_k }[/math] ו-[math]\displaystyle{ f(z_k)=m_k }[/math]. כעת [math]\displaystyle{ |y_k-z_k|\lex_k-x_{k-1}=\Delta x\le\lambda(P)\lt \delta }[/math] לכן [math]\displaystyle{ M_k-m_k=|f(y_k)-f(z_k)|\lt \frac\varepsilon{2(b-a)} }[/math] לבסוף ...

ונובע ממשפט 5 (או 4) ש-f אינטגרבילית ב-[math]\displaystyle{ [a,b] }[/math]. [math]\displaystyle{ \blacksquare }[/math]

משפט 7

תהי f מוגדרת ומונוטונית בקטע [math]\displaystyle{ [a,b] }[/math]. אזי f אינטגרבילית ב-[math]\displaystyle{ [a,b] }[/math].

הוכחה

נוכיח לפונקציה עולה. לכל [math]\displaystyle{ x\in[a,b] }[/math] מתקיים [math]\displaystyle{ f(a)\le f(x)\le f(b) }[/math] ולכן f חסומה. כעת ניקח חלוקה P כלשהי של [math]\displaystyle{ [a,b] }[/math]:

[math]\displaystyle{ a=x_0\lt x_1\lt \dots\lt x_n=b }[/math] ונבנה [math]\displaystyle{ \overline S(f,P)-\underline S(f,P)=\sum_{k=1}^n(M_k-m_k)\Delta x_k=\sum_{k=1}^n(f(x_k)-f(x_{k-1})\Delta x_k }[/math]

כעת, אם נבחר כל [math]\displaystyle{ \Delta x_k=\frac{b-a}n }[/math] (ובפרט הם שווים) נקבל ... נשאיף [math]\displaystyle{ n\to\infty }[/math] ואגף ימין שואף ל-0. מכאן ש-[math]\displaystyle{ \overline S(f,P)-\underline S(f,P) קטן כרצוננו, וקיימנו את התנאי של משפט 5. לכן f אינטגרבילית ב-\lt math\gt [a,b] }[/math]</math>, {{משל}