מדר קיץ תשעב/סיכומים/הרצאות/2.8.12

מתוך Math-Wiki
הגרסה להדפסה אינה נתמכת עוד וייתכן שיש בה שגיאות תיצוג. נא לעדכן את הסימניות בדפדפן שלך ולהשתמש בפעולת ההדפסה הרגילה של הדפדפן במקום זה.

מד״ר מסדר שני

הצורה הכללית של מד״ר כזו היא [math]\displaystyle{ F(x,y,y',y'')=0 }[/math], והפתרון הוא מהצורה [math]\displaystyle{ y=\varphi(x,c_1,c_2) }[/math].

בעיית קושי מסדר 2

זו בעיה שבה אנו נדרשים לפתור מד״ר עם שני תנאי התחלה [math]\displaystyle{ \begin{cases}y(x_0)=y_0\\y'(x_0)=y_0'\end{cases} }[/math] (מובן ש־[math]\displaystyle{ y_0' }[/math] אינו הנגזרת של הקבוע [math]\displaystyle{ y_0 }[/math], אלא ערך הנגזרת בנקודה [math]\displaystyle{ x_0 }[/math]).

סוגים נפוצים

סוג 1

מתקיים [math]\displaystyle{ y^{(n)}=f(x) }[/math]. ניתן לפתור זאת ע״י אינטגרציה [math]\displaystyle{ n }[/math] פעמים (במקרה שלנו, [math]\displaystyle{ n=2 }[/math]).

סוג 2

אלה מד״ר שבהן ניתן להוריד את סדר המשוואה. עבור מד״ר מסדר 2, נחלק לשני מקרים:

מקרה 1

[math]\displaystyle{ y }[/math] לא מופיע במשוואה, כלומר המשוואה מהצורה [math]\displaystyle{ y''=f(x,y') }[/math]. במקרה זה נציב [math]\displaystyle{ z=y' }[/math] ונקבל מד״ר מסדר ראשון.

תרגיל

פתרו את המד״ר [math]\displaystyle{ y''=x y' }[/math].

פתרון
נציב [math]\displaystyle{ z=y' }[/math] ולכן: [math]\displaystyle{ }[/math] [math]\displaystyle{ z'=xz }[/math] [math]\displaystyle{ \implies }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ }[/math] [math]\displaystyle{ \frac{z'}z=x }[/math] [math]\displaystyle{ \implies }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ }[/math] [math]\displaystyle{ \int\frac{\mathrm dz}z=\int x\mathrm dx }[/math] [math]\displaystyle{ \implies }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ }[/math] [math]\displaystyle{ \ln\vert z\vert=\frac{x^2}2+c_0 }[/math] [math]\displaystyle{ \implies }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math]
נסמן [math]\displaystyle{ c_1:=\mathrm e^{c_0} }[/math]: [math]\displaystyle{ }[/math] [math]\displaystyle{ z=y'=c_1\mathrm e^{\frac{x^2}2} }[/math] [math]\displaystyle{ \implies }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ }[/math] [math]\displaystyle{ y=c_1\int\mathrm e^{\frac{x^2}2}\mathrm dx }[/math] [math]\displaystyle{ \implies }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math]

[math]\displaystyle{ \blacksquare }[/math]

מקרה 2

[math]\displaystyle{ x }[/math] לא מופיע במשוואה, כלומר המד״ר מהצורה [math]\displaystyle{ y''=f(y,y') }[/math]. שוב נגדיר [math]\displaystyle{ z=y' }[/math], ואז [math]\displaystyle{ y''=z'=\frac{\mathrm dz}{\mathrm dy}\frac{\mathrm dy}{\mathrm dx}=z_y' z }[/math]. המד״ר הופכת ל־[math]\displaystyle{ zz_y'=f(y,z) }[/math], כלומר מד״ר מסדר ראשון של [math]\displaystyle{ y,z }[/math]. נובע ש־[math]\displaystyle{ x=\int\frac{\mathrm dy}z }[/math].

תרגיל

פתרו [math]\displaystyle{ yy''-2(y')^2=0 }[/math].

פתרון

נציב [math]\displaystyle{ z }[/math] באופן הנ״ל ונקבל

[math]\displaystyle{ \begin{align}&y\frac{\mathrm dz}{\mathrm dy}z=2z^2\\\implies&\int\frac{\mathrm dz}{2z}=\int\frac{\mathrm dy}y\\\implies&\frac12\ln|z|=\ln|y|+C_1\\\implies&z=C_2y^2\\\implies&\frac{\mathrm dy}{\mathrm dx}=C_2y^2\\\implies&\int\frac{\mathrm dy}{y^2}=\int C_2\mathrm dx\\\implies&-\frac1y=C_2x+C_3\\\implies&y=\frac{c_2}{c_1x+1}\end{align} }[/math]

[math]\displaystyle{ \blacksquare }[/math]

משוואות ריקטי

אלה מד״ר מהצורה [math]\displaystyle{ y'+f(x)y^2+g(x)y+h(x)=0 }[/math]. פתרון כללי של משוואת ריקטי הוא מהצורה [math]\displaystyle{ y=\frac{c a(x)+b(x)}{c A(x)+B(x)} }[/math], ולכל ביטוי מהצורה הנ״ל קיימת משוואת ריקטי מתאימה.

הוכחה

ראשית, נוכיח שלכל ביטוי מהצורה הנ״ל קיימת משוואת ריקטי מתאימה: מתקיים [math]\displaystyle{ y\cdot(cA+B)=ca+b }[/math] ולכן [math]\displaystyle{ c(yA-a)-b+yB=0 }[/math]. נגזור את שני האגפים ונקבל [math]\displaystyle{ c(y'A+A'y-a')-b'+(y'B+B'y)=0 }[/math]. נציג את שתי המשוואות האחרונות בצורה [math]\displaystyle{ {\color{Blue}\begin{pmatrix}y'A+A'y-a'&-b'+y'B+B'y\\yA-a&-b+yB\end{pmatrix}}\begin{pmatrix}c\\1\end{pmatrix}=\begin{pmatrix}0\\0\end{pmatrix} }[/math] ונשים לב שהמטריצה הכחולה מאפסת וקטור שאינו וקטור האפס, ולפיכך הדטרמיננטה שלה היא 0: [math]\displaystyle{ \begin{vmatrix}y'A+A'y-a'&-b'+y'B+B'y\\yA-a&-b+yB\end{vmatrix}=0 }[/math]. נחשב את הדטרמיננטה ונגלה ש־[math]\displaystyle{ y'+y^2\frac{AB'-B'a}{Ab-aB}+y\frac{a'B-A'B-Ab'-aB'}{bA-aB}+\frac{ab'-a'b}{bA-aB}=0 }[/math], כדרוש.


לצד השני, יהי [math]\displaystyle{ y_z(x) }[/math] פתרון רגולרי של משוואת ריקטי. נציב במד״ר [math]\displaystyle{ y(x)=y_z(x)+z(x) }[/math] (כאשר [math]\displaystyle{ z }[/math] פונקציה לא ידועה) ונגלה ש־

[math]\displaystyle{ }[/math] [math]\displaystyle{ z'+y_z'+f(x)\left(z^2+2zy_z+y_z^2\right)+g(x)(y_z+z)+h(x)=0 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ }[/math] [math]\displaystyle{ \Big(z'+z^2+(2f(x)y_z+g(x))z\Big)+\Big(y_z'+f(x)y_z^2+g(x)y_z+h(x)\Big)=0 }[/math] [math]\displaystyle{ \implies }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ y_z }[/math] פתרון, לכן: [math]\displaystyle{ }[/math] [math]\displaystyle{ z'+z^2+(2f(x)y_z+g(x))z=0 }[/math] [math]\displaystyle{ \implies }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math]

לכן [math]\displaystyle{ z }[/math] פתרון של משוואת ברנולי עם [math]\displaystyle{ y^2 }[/math], ולפיכך הוא מהצורה [math]\displaystyle{ z=\frac1{c\alpha(x)+\beta(x)} }[/math]. לבסוף הפתרון מהצורה [math]\displaystyle{ y=y_z+z=\frac{cy_z(x)\alpha(x)+y_z(x)z(x)+1}{c\alpha(x)+\beta(x)} }[/math]. [math]\displaystyle{ \blacksquare }[/math]

מערכת מד״ר מסדר ראשון

זו מערכת מהצורה [math]\displaystyle{ \vec F(x,\vec y,\vec y\,')=0 }[/math] כאשר [math]\displaystyle{ \vec F }[/math] היא מערכת של [math]\displaystyle{ n }[/math] פונקציות. המערכת היא ב־[math]\displaystyle{ 2n+1 }[/math] משתנים. בצורה נורמלית: [math]\displaystyle{ \vec y\,'=\vec f(x,\vec y) }[/math]. לפיכך הפתרון הכללי הינו מהצורה [math]\displaystyle{ \begin{pmatrix}y_1\\y_2\end{pmatrix}=\begin{pmatrix}\varphi_1(x,c_1,c_2)\\\varphi_2(x,c_1,c_2)\end{pmatrix} }[/math]. לדוגמה, [math]\displaystyle{ \begin{cases}y_1'+\sin(x)+y_1y_2x^2=0\\\frac{y_1'}{y_2}+\frac{y_2'}{y_1}+\cos(x)=0\end{cases} }[/math] היא מערכת מד״ר.

בעיית קושי

במערכת מד״ר מסדר 1, בעיית קושי היא לפתור את המד״ר עם תנאי ההתחלה [math]\displaystyle{ \vec y(x_0)=\vec y_0 }[/math].

משפט

מד״ר מסדר [math]\displaystyle{ n }[/math] (נורמלית/לינארית/לינארית־הומוגנית) שקולה למערכת של [math]\displaystyle{ n }[/math] מד״ר מסדר ראשון (נורמליות/לינאריות/לינאריות־והומוגניות). אם למד״ר מסדר גבוה נתונים ערכי ההתחלה [math]\displaystyle{ y(x_0),y'(x_0),\dots,y^{(n-1)}(x_0) }[/math] אז המד״ר שקולה לבעיית קושי עבור המערכת.

הוכחה

נתונה המד״ר [math]\displaystyle{ F\left(x,y,y',\dots,y^{(n)}\right)=0 }[/math] ונסמן [math]\displaystyle{ \forall k=1,\dots, n-1:\ y_k=y^{(k)} }[/math]. לכן [math]\displaystyle{ F(x,y,y_1,y_2,\dots,y_{n-1},y_{n-1}')=0 }[/math]. נוסיף את המד״ר הבאות: [math]\displaystyle{ \forall k=1,\dots,n-1:\ y_k=y_{k-1}' }[/math]. המערכת שקולה למד״ר המקורית והיא נורמלית/לינארית/לינארית־הומוגנית בהתאם למערכת המקורית. [math]\displaystyle{ \blacksquare }[/math]

דוגמה

[math]\displaystyle{ y^{(3)}+x^2y''+\sin(x)y=0 }[/math]. נציב [math]\displaystyle{ z=y' }[/math] ו־[math]\displaystyle{ w=z'=y'' }[/math] ולפיכך [math]\displaystyle{ \begin{cases}w'+x^2w+\sin(x)y=0\\z=y'\\w=z'\end{cases} }[/math].

מד״ר סתומות מסדר 1

אלה מד״ר [math]\displaystyle{ F(x,y,y')=0 }[/math] שאנו לא יודעים כיצד להביאן לצורה נורמלית.

סוגים נפוצים

מקרה 1

משוואה מסדר 1 וממעלה [math]\displaystyle{ n }[/math]: [math]\displaystyle{ \sum_{k=0}^{n-1}p_k(x,y)(y')^k+(y')^n=0 }[/math]. מכאן שקיימות פונקציות [math]\displaystyle{ f_k,\quad k\in\{1,2,\dots,n\} }[/math] שעבורן [math]\displaystyle{ \prod_{k=1}^n\Big(y'-f_k(x,y)\Big)=0 }[/math].

תרגיל

פתרו [math]\displaystyle{ (y')^2-\frac{xy}{a^2}=0 }[/math].

פתרון
[math]\displaystyle{ \begin{align}&\left(y'-\frac\sqrt{xy}a\right)\left(y'+\frac\sqrt{xy}a\right)=0\\\implies&y'=\pm\frac\sqrt{xy}a\\\implies&\frac{y'}\sqrt y=\pm\frac\sqrt xa\\\implies&\int\frac{\mathrm dy}\sqrt y=\pm\int\frac\sqrt xa\mathrm dx\\\implies&2\sqrt y=\pm\frac{2x^{3/2}}{3a}+c\\\implies&y=\frac14\left(c\pm\frac{2\sqrt x^3}{3a}\right)^2\end{align} }[/math]

[math]\displaystyle{ \blacksquare }[/math]

מקרה 2

[math]\displaystyle{ x }[/math] לא מופיעה במד״ר. צורתה [math]\displaystyle{ F(y,y')=0 }[/math], ובהצבת [math]\displaystyle{ z=y'=\frac{\mathrm dy}{\mathrm dx} }[/math] נקבל [math]\displaystyle{ F(y,z)=0 }[/math]. נשים לב ש־[math]\displaystyle{ \frac{\mathrm dy}z=\mathrm dx }[/math] ולכן [math]\displaystyle{ x=\int\mathrm dx=\int\frac{\mathrm dy}z=\frac yz+\int\frac y{z^2}\mathrm dz }[/math]. לפיכך, אם [math]\displaystyle{ y=\varphi(z) }[/math] אזי [math]\displaystyle{ x=\frac{\varphi(z)}z+\int\frac{\varphi(z)}{z^2}\mathrm dz }[/math].

תרגיל

פתרו [math]\displaystyle{ y=(y')^2+2(y')^3 }[/math].

פתרון

נסמן [math]\displaystyle{ z=y' }[/math] ונציב במד״ר: [math]\displaystyle{ y=z^2+2z^3 }[/math]. עתה [math]\displaystyle{ x=\frac yz+\int\frac y{z^2}\mathrm dz=\frac{z^2+2z^3}z+\int(1+2z)\mathrm dz=c+z+2z^2+z+z^2=c+2z+3z^2=c+2y'+3(y')^2 }[/math], וזו מד״ר ממקרה 1, שאותו אנו כבר יודעים לפתור. [math]\displaystyle{ \blacksquare }[/math]

מקרה 3

[math]\displaystyle{ y }[/math] לא מופיעה, [math]\displaystyle{ F(x,y')=0 }[/math]. שוב נציב [math]\displaystyle{ z=y' }[/math], ונניח [math]\displaystyle{ x=\varphi(y')=\varphi(z) }[/math]. אזי [math]\displaystyle{ y=\int z\mathrm dx=zx-\int x\mathrm dz=z\cdot\varphi(z)-\int\varphi(z)\mathrm dz }[/math].

תרגיל

פתרו [math]\displaystyle{ x=y'\sin(y') }[/math].

פתרון

אחרי הצבה [math]\displaystyle{ z=y' }[/math] נקבל [math]\displaystyle{ x=z\sin(z) }[/math] ולבסוף [math]\displaystyle{ y=z\cdot z\sin(z)-\int z\sin(z)\mathrm dz=c+z^2\sin(z)+z\cos(z)-\sin(z) }[/math]. נציב חזרה [math]\displaystyle{ z=y' }[/math] ונקבל את מקרה 2. [math]\displaystyle{ \blacksquare }[/math]

מקרה 4

[math]\displaystyle{ y }[/math] מופיעה ו־[math]\displaystyle{ x }[/math] לא, כלומר [math]\displaystyle{ F(y,y')=0 }[/math], והמד״ר סתומה. כרגיל, נגדיר [math]\displaystyle{ z=y' }[/math]. אם [math]\displaystyle{ y=\varphi(t) }[/math] ו־[math]\displaystyle{ z=\psi(t) }[/math] אזי [math]\displaystyle{ \mathrm dy=\psi(t)\mathrm dx=\frac{\mathrm d\varphi}{\mathrm dt}(t)\mathrm dt=\varphi_t'(t)\mathrm dt }[/math], ומכאן ש־[math]\displaystyle{ \mathrm dx=\frac{\varphi_t'(t)}{\psi(t)}\mathrm dt }[/math]. לבסוף, [math]\displaystyle{ \begin{cases}x=\int\frac{\varphi_t'(t)}{\psi(t)}\mathrm dt\\y=\varphi(t)\end{cases} }[/math].

תרגיל

פתרו [math]\displaystyle{ y=a\sqrt{1+(y')^2} }[/math].

פתרון

נסמן [math]\displaystyle{ \psi(t)=\sinh(t)=z }[/math], נציב במד״ר ונקבל [math]\displaystyle{ y=a\cosh(t)=\varphi(t) }[/math]. כמו כן, [math]\displaystyle{ x=\int\frac{a\sinh(t)}{\sinh(t)}\mathrm dt=at+c_1 }[/math]. עתה, [math]\displaystyle{ t=\frac{x+c}a }[/math] ולכן [math]\displaystyle{ y=a\cosh\left(\frac{x+c}a\right) }[/math]. [math]\displaystyle{ \blacksquare }[/math]

מקרה 5

[math]\displaystyle{ x }[/math] מופיעה ו־[math]\displaystyle{ y }[/math] לא, כלומר [math]\displaystyle{ F(x,y')=0 }[/math], והמד״ר סתומה. נציב [math]\displaystyle{ z=y',x=\varphi(t) }[/math] ולכן [math]\displaystyle{ F(\varphi(t),z)=0 }[/math]. נסמן [math]\displaystyle{ z=\psi(t) }[/math] ונגלה כי [math]\displaystyle{ \mathrm dx=\varphi_t'(t)\mathrm dt=\frac{\mathrm dy}{\psi(t)} }[/math]. מאינטגרציה ולפי הגדרת [math]\displaystyle{ \varphi }[/math] נקבל [math]\displaystyle{ \begin{cases}y=\int\psi(t)\varphi_t'(t)\mathrm dt\\x=\varphi(t)\end{cases} }[/math].