שינויים

קפיצה אל: ניווט, חיפוש

אורך עקומה

נוספו 26 בתים, 16:57, 27 בינואר 2016
[[קובץ:קירוב אורך גרף.png|ימין|300px]]
תהי <math>f </math> פונקציה גזירה ברציפות בקטע סגור <math>[a,b]</math>. נקרב את אורך העקומה שלה (אורך הקו שלה בגרף) על -ידי גבול סכום המיתרים בין נקודות הפונקציה על חלוקות (סכום הקווים הכחולים בציור).
עבור חלוקת הקטע <math>P=\{x_0,...\ldots,x_n\}</math>, הנוסחא לסכום המיתרים נתונה על -ידי: {{left|<math>\begin{align}L(P)&=\sum_{k=1}^n\sqrt{(x_{k-1}-x_k)^2+(f(x_k)-f(x_{k-1}))^2}\\&=\sum_{k=1}^n\sqrt{1+\left(\frac{f(x_k)-f(x_{k-1})}{x_k-x_{k-1}}\right)^2}\ (x_k-x_{k-1})\\&=\sum_{k=1}^n\sqrt{1+f'(c_k)^2}\Delta x_k\end{align}</math>}}
{{left|<math>\begin{align}L(P)&=\sum_{k=1}^n\sqrt{(x_{k-1}-x_k)^2+\big(f(x_k)-f(x_{k-1})\big)^2}\\&=\sum_{k=1}^n\sqrt{1+\left(\frac{f(x_k)-f(x_{k-1})}{x_k-x_{k-1}}\right)^2}\ (x_k-x_{k-1})\\&=\sum_{k=1}^n\sqrt{1+f'(c_k)^2}\Delta x_k\end{align}</math>}}
כאשר הנקודות <math>c_k</math> מקיימות <math>\forall k:\ c_k\in(x_{k-1},x_k)</math>. אכן קיימות נקודות כאלה לפי משפט לגראנז'.
הגענו לסכום רימן עבור הפונקציה <math>\sqrt{1+f'(x)^2}</math>. כיון שנתון כי <math>f'(x)</math> רציפה, גם <math>\sqrt{1+f'(x)^2}</math> רציפה בקטע הסגור ולכן אינטגרבילית.
הגענו לסכום רימן עבור הפונקציה <math>\sqrt{1+f'(x)^2}</math>. כיוון שנתון כי <math>f'(x)</math> רציפה, גם <math>\sqrt{1+f'(x)^2}</math> רציפה בקטע הסגור ולכן אינטגרבילית. על כן סכומי רימן אלה שואפים לאינטגרל <math>\displaystyle\int\limits_a^b\sqrt{1+f'(x)^2}\ \mathrm dx</math> וזוהי הנוסחא לחישוב אורך עקום של פונקציה.
[[קטגוריה:אינפי]]
226
עריכות