הבדלים בין גרסאות בדף "אטום"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
שורה 36: שורה 36:
  
 
     <math>E_n=-{{e^4m} \over {8 \pi \epsilon_0 r}}=-{{hcR} \over n^2}</math>  
 
     <math>E_n=-{{e^4m} \over {8 \pi \epsilon_0 r}}=-{{hcR} \over n^2}</math>  
כאשר <math>R={{e^4m} \over {8  \epsilon_0 ^2 h^3c}}</math>קבוע רידברג (Rydberg)  
+
כאשר <math>R={{e^4m} \over {8  \epsilon_0 ^2 h^3c}}</math> קבוע רידברג (Rydberg)  
 
 
 
מתוך ביטוי זה ניתן לשרטט את רמות האנרגיה של אטום המימן (ראו איור 1).
 
מתוך ביטוי זה ניתן לשרטט את רמות האנרגיה של אטום המימן (ראו איור 1).
שורה 44: שורה 44:
 
הקווים הספקטרליים של אטומי המימן יוצרים מספר סדרות המתאימות למעברים של האטום מרמת אנרגיה גבוהה (n) לנמוכות יותר (m). סדרות אלו קיבלו שמות של המדענים: Lyman, Balmer, , Paschen, Brackett, Pfund.
 
הקווים הספקטרליים של אטומי המימן יוצרים מספר סדרות המתאימות למעברים של האטום מרמת אנרגיה גבוהה (n) לנמוכות יותר (m). סדרות אלו קיבלו שמות של המדענים: Lyman, Balmer, , Paschen, Brackett, Pfund.
  
בעבודה זו נשתמש בסדרת Balmer כי בסדרה זו קוי הספקטרום המתקבלים הם בתחום הנראה. מודל בוהר נותן במדוייק את הקווים הספקטרליים של אטום המימן או דמוי מימן – שבקליפתו החיצונית אלקטרון אחד בלבד, אבל נכשל במקרים אחרים. לתיאור אטומים בעלי מספר אלקטרונים, יש להשתמש בתיאור הקוונטי המלא של האטום – לפי משוואת שרדינגר.
+
בעבודה זו נשתמש בסדרת Balmer כי בסדרה זו קוי הספקטרום המתקבלים הם בתחום הנראה. מודל בוהר נותן במדוייק את הקווים הספקטרליים של אטום המימן או דמוי מימן – שבקליפתו החיצונית אלקטרון אחד בלבד, אך נכשל במקרים אחרים. לתיאור אטומים בעלי מספר אלקטרונים, יש להשתמש בתיאור הקוונטי המלא של האטום – לפי משוואת שרדינגר.
 +
 
 +
===ניסוי פרנק-הרץ (Franck–Hertz)===
 +
 
 +
במעבדה זו נחזור על אחת הגרסאות של ניסוי פרנק-הרץ (James Franck – Gustav Hertz), אשר הפכו לאחת ההוכחות הניסיוניות הראשונות למודל בוהר המהווה יסוד לפיסיקה הקוונטית. פרס נובל לפיסיקה הוענק לגוסטב הרץ וג'יימס פרנק עבור ניסויים אלה  ב-1925.
 +
 
 +
'''פוטנציאלים של עירור (excitation) ויינון (ionization)'''
 +
 
 +
בליעת אנרגיה ע"י אטום ומעבר האטום למצב סטציונרי בעל אנרגיה גדולה יותר נקרא עירור. אנרגית העירור מבוטאת בדרך כלל ביחידות אלקטרון-וולט (eV). על מנת לקבוע את המצבים הסטציונריים ניתן להשתמש בהפצצת אטומים באלקטרונים. כאשר האנרגיה של אלקטרונים נמוכה, ההתנגשויות עם האטומים הן אלסטיות. כתוצאה מהבדל גדול במסות של האלקטרונים והאטומים, האלקטרונים מעבירים לאטומים רק חלק קטן מהאנרגיה שלהם. אולם כשהאנרגיה מגיעה לערך מסוים ההתנגשויות כבר אינן אלסטיות: אלקטרונים מוסרים לאטומים את כל האנרגיה שלהם, והאטומים עוברים למצב בעל אנרגיה גדולה יותר. ניסוים אלה מוכיחים את קיומם של מצבים סטציונריים באטום ומאפשרים למדוד את האנרגיות שלהם. אם אנרגית האלקטרונים מספיק גדולה, מתרחש יינון האטום - בריחת אלקטרון אחד מאטום והפיכת האטום ליון.
 +
 
 +
בניסוי שלנו נחזור על אחת הגרסאות של ניסוי פרנק-הרץ. נשתמש בשפופרת תיראטרון - טריאודה ממולאת גז עם קתודה מחוממת. מתח מאיץ מופעל בין השריג לבין הקתודה של התיראטרון (ציור 2). מפעילים מתח שלילי על קולט (אלקטרודה המשמשת כאנודה ביישומים רגילים של תיראטרון), כך שאלקטרונים אינם יכולים להגיע אליו. הזרם במעגל הקולט נוצר כאשר מתבצע עירור באטומי הגז שבשפופרת באופן הבא:
 +
האלקטרונים אשר נפלטים מהקתודה המחוממת ומואצים לעבר השריג (בשל הפוטנציאל החיובי) מתנגשים עם אטומי הגז שבפופרת. בשלב הראשוני ההתנגשויות הינם אלסטיות כך שהאלקטרונים כמעט ולא מאבדים מהאנרגיה שלהם וממשיכים לעבר השריג. גם האלקטרונים המצליחים לעבור את השריג חוזרים בחזרה אליו בשל הפוטנציאל השלילי של הקולט. כאשר האנרגיה הקינטית של האלקטרונים (בשל הגדלת הפוטנציאל), שווה לרמת האנרגיה של אטומי הגז מתבצע עירור של האטומים. האלקטרונים מוסרים את האנרגיה שלהם לאטומים ובככך גורמים לאלקטרוני אטומי-הגז לעבור למסלול סטציונרי בעל אנרגיה גבוהה יותר. כאשר האלקטרונים של הגז, לאחר פרק זמן קצר מאוד, חוזרים למצב בעל אנרגיה יותר נמוכה, האטומים פולטים פוטונים. כאשר פוטונים אלו פוגעים בקולט הם גורמים לאפקט הפוטו-אלקטרי. הפוטונים מצליחים לשחרר אלקטרונים מהקולט (אנרגית הפוטונים גדולה פונקצית העבודה של הקולט) אשר נעים מהקולט לעבר השריג וכך נוצר הזרם במעגל הקולט.
 +
הזרם במעגל הקולט יימדד בעזרת מכשיר בעל רגישות בסדר גודל של 10-10 A. במערכת שלנו למעגל הקולט הוכנס נגד של 106 , ואת מפל מתח עליו מודדים בעזרת מילי-וולטמטר בעל רגישות של 0.1mV סך כל הרגישות בזרם תהיה
 +
10-10 A. פוטנציאל העירור של אטומי הגז בתיראטרון שווה למתח המאיץ שעבורו מופיע זרם במעגל של הקולט.
 +
את פוטנציאל היינון קובעים לפי עלייה חזקה בזרם השריג. עלייה זאת קשורה לנטרול של המטען האלקטרוני המרחבי ליד הקתודה על ידי היונים החיוביים שהופיעו (ציור 3). על מנת להגביל את זרם השריג, הוכנסה התנגדות למעגל.

גרסה מ־16:21, 21 באוקטובר 2014

בשנת 1913 הציג נילס בוהר את מודל האטום שלו, לפיו בתוך האטום אלקטרונים נעים במספר בדיד של מסלולים, שבהם התנע הזוויתי של האלקטרונים הוא ביחידות שלמות של קבוע פלאנק. המודל הזה הסביר באופן יפה את ספקטרום הפליטה של אטום המימן, וההסבר האינטואיטיבי שעומד מאחוריו הוא שהאלקטרון מתנהג כמו גל, והמסלולים בהם הוא יכול לנוע דומים למצבים עצמיים של גלים.

בניסוי זה תוכלו לקבוע את רמות האנרגיה של אטום המימן לפי קווי ספקטרום הפליטה שלו ולמצוא את קבוע רידברג (Rydberg). חלקו שני של הניסוי הוא ביצוע גירסא של ניסוי פרנק-הרץ למציאת פוטנציאל עירור ופוטנציאל יינון של אטומי גז אציל.

רקע תיאורטי

מודל האטום של בוהר

עקב נפילתו של המודל הפלנטרי של רתרפורד, בשנת 1913 הציע נילס בוהר (N.Bohr), פיזיקאי דני צעיר שעבד במעבדתו של רתרפורד מודל מתוקן. הנחות בוהר הן עבור אטום המימן שהוא האטום הפשוט ביותר – בו יש אלקטרון אחד המסתובב מסביב לגרעין המכיל פרוטון בודד.

  • אלקטרון יכול לנוע מסביב לגרעין רק במסלולים מעגליים מסויימים. כאשר האלקטרון נע באחד מהמסלולים הללו, אין הוא פולט קרינה אלקטרומגנטית למרות תנועתו המואצת. הנחה זו מנוגדת לחוקי הפיזיקה הקלאסית ובוהר קיבל אותה כאקסיומה.

התנאי למסלולים המותרים (נקראים גם סטציונריים) הוא: mvr=n {h \over 2 \pi} כאשר: m- מסת האלקטרון, h-קבוע פלנק ו- n מספר טבעי המאפיין את אינדקס המסלול.

  • אלקטרון יכול לעבור ממסלול סטציונרי מסויים – בעל אינדקס n (בו האנרגיה גבוהה) למסלול סטציונרי אחר - בעל אינדקס m (בו האנרגיה נמוכה) ולהיפך ע"י פליטה או בליעה (בהתאמה) של פוטון בעל אנרגיה מתאימה:
                     hf=|E_n-E_m| 				 

בהתבססו על הנחות יסוד אלה, חישב בוהר את רדיוסי המסלולים המותרים של אטום המימן, את אנרגיות המצבים היציבים ואורכי הגל של קווי ספקטרום הפליטה או ספקטרום הבליעה המתאימים למעבר של האטום ממצב יציב אחד לאחר.

לפי החוק השני של ניוטון, לחלקיק בתנועה מעגלית יש תאוצה צנטריפטלית שכיוונה כלפי מרכז המעגל. לכן על החלקיק פועל כח צנטריפטלי שכיוונו למרכז וגדלו F={mv^2 \over r} , הכח המאלץ את האלקטרון לנוע במעגל סביב הגרעין הוא הכח החשמלי המושך אותו אל הגרעין. מהשוואת שני כוחות אלו נקבל את רדיוס המסלול:

r={e^2 \over {4 \pi \epsilon_0 m v^2}}

כאשר \epsilon_0=8.85*10^{-12} Fm^{-1} הוא הקבוע הדיאלקטרי של החלל החופשי.

הצבת ערכה של v ממשוואת התנאי למסלולים סטציונריים נותנת ערך בדיד לרדיוסים:

                r_n=({{\epsilon_0 h^2} \over {\pi me^2}})n^2				 

האנרגיה של האלקטרון בכל אחד מהמצבים הסטציונריים מורכבת מהאנרגיה הקינטית ומהאנרגיה הפוטנציאלית של האלקטרון והגרעין כלומר:

  E_T=E_p+E_k=-{e^2 \over {4 \pi \epsilon_0 r}}+{{mv^2} \over 2}			   

נקבל לאחר הצבת הרדיוס ואלגברה פשוטה כי מסלולי האנרגיה מקוונטטים ושווים:

   E_n=-{{e^4m} \over {8 \pi \epsilon_0 r}}=-{{hcR} \over n^2}			 

כאשר R={{e^4m} \over {8  \epsilon_0 ^2 h^3c}} קבוע רידברג (Rydberg)

מתוך ביטוי זה ניתן לשרטט את רמות האנרגיה של אטום המימן (ראו איור 1).

איור 1 - ספקטרום פליטה של אטום מימן

הקווים הספקטרליים של אטומי המימן יוצרים מספר סדרות המתאימות למעברים של האטום מרמת אנרגיה גבוהה (n) לנמוכות יותר (m). סדרות אלו קיבלו שמות של המדענים: Lyman, Balmer, , Paschen, Brackett, Pfund.

בעבודה זו נשתמש בסדרת Balmer כי בסדרה זו קוי הספקטרום המתקבלים הם בתחום הנראה. מודל בוהר נותן במדוייק את הקווים הספקטרליים של אטום המימן או דמוי מימן – שבקליפתו החיצונית אלקטרון אחד בלבד, אך נכשל במקרים אחרים. לתיאור אטומים בעלי מספר אלקטרונים, יש להשתמש בתיאור הקוונטי המלא של האטום – לפי משוואת שרדינגר.

ניסוי פרנק-הרץ (Franck–Hertz)

במעבדה זו נחזור על אחת הגרסאות של ניסוי פרנק-הרץ (James Franck – Gustav Hertz), אשר הפכו לאחת ההוכחות הניסיוניות הראשונות למודל בוהר המהווה יסוד לפיסיקה הקוונטית. פרס נובל לפיסיקה הוענק לגוסטב הרץ וג'יימס פרנק עבור ניסויים אלה ב-1925.

פוטנציאלים של עירור (excitation) ויינון (ionization)

בליעת אנרגיה ע"י אטום ומעבר האטום למצב סטציונרי בעל אנרגיה גדולה יותר נקרא עירור. אנרגית העירור מבוטאת בדרך כלל ביחידות אלקטרון-וולט (eV). על מנת לקבוע את המצבים הסטציונריים ניתן להשתמש בהפצצת אטומים באלקטרונים. כאשר האנרגיה של אלקטרונים נמוכה, ההתנגשויות עם האטומים הן אלסטיות. כתוצאה מהבדל גדול במסות של האלקטרונים והאטומים, האלקטרונים מעבירים לאטומים רק חלק קטן מהאנרגיה שלהם. אולם כשהאנרגיה מגיעה לערך מסוים ההתנגשויות כבר אינן אלסטיות: אלקטרונים מוסרים לאטומים את כל האנרגיה שלהם, והאטומים עוברים למצב בעל אנרגיה גדולה יותר. ניסוים אלה מוכיחים את קיומם של מצבים סטציונריים באטום ומאפשרים למדוד את האנרגיות שלהם. אם אנרגית האלקטרונים מספיק גדולה, מתרחש יינון האטום - בריחת אלקטרון אחד מאטום והפיכת האטום ליון.

בניסוי שלנו נחזור על אחת הגרסאות של ניסוי פרנק-הרץ. נשתמש בשפופרת תיראטרון - טריאודה ממולאת גז עם קתודה מחוממת. מתח מאיץ מופעל בין השריג לבין הקתודה של התיראטרון (ציור 2). מפעילים מתח שלילי על קולט (אלקטרודה המשמשת כאנודה ביישומים רגילים של תיראטרון), כך שאלקטרונים אינם יכולים להגיע אליו. הזרם במעגל הקולט נוצר כאשר מתבצע עירור באטומי הגז שבשפופרת באופן הבא: האלקטרונים אשר נפלטים מהקתודה המחוממת ומואצים לעבר השריג (בשל הפוטנציאל החיובי) מתנגשים עם אטומי הגז שבפופרת. בשלב הראשוני ההתנגשויות הינם אלסטיות כך שהאלקטרונים כמעט ולא מאבדים מהאנרגיה שלהם וממשיכים לעבר השריג. גם האלקטרונים המצליחים לעבור את השריג חוזרים בחזרה אליו בשל הפוטנציאל השלילי של הקולט. כאשר האנרגיה הקינטית של האלקטרונים (בשל הגדלת הפוטנציאל), שווה לרמת האנרגיה של אטומי הגז מתבצע עירור של האטומים. האלקטרונים מוסרים את האנרגיה שלהם לאטומים ובככך גורמים לאלקטרוני אטומי-הגז לעבור למסלול סטציונרי בעל אנרגיה גבוהה יותר. כאשר האלקטרונים של הגז, לאחר פרק זמן קצר מאוד, חוזרים למצב בעל אנרגיה יותר נמוכה, האטומים פולטים פוטונים. כאשר פוטונים אלו פוגעים בקולט הם גורמים לאפקט הפוטו-אלקטרי. הפוטונים מצליחים לשחרר אלקטרונים מהקולט (אנרגית הפוטונים גדולה פונקצית העבודה של הקולט) אשר נעים מהקולט לעבר השריג וכך נוצר הזרם במעגל הקולט. הזרם במעגל הקולט יימדד בעזרת מכשיר בעל רגישות בסדר גודל של 10-10 A. במערכת שלנו למעגל הקולט הוכנס נגד של 106 , ואת מפל מתח עליו מודדים בעזרת מילי-וולטמטר בעל רגישות של 0.1mV סך כל הרגישות בזרם תהיה

10-10 A. פוטנציאל העירור של אטומי הגז בתיראטרון שווה למתח המאיץ שעבורו מופיע זרם במעגל של הקולט. 

את פוטנציאל היינון קובעים לפי עלייה חזקה בזרם השריג. עלייה זאת קשורה לנטרול של המטען האלקטרוני המרחבי ליד הקתודה על ידי היונים החיוביים שהופיעו (ציור 3). על מנת להגביל את זרם השריג, הוכנסה התנגדות למעגל.