שינויים

אינפי 2 לתיכוניסטים תש"ע - שאלות ותשובות

נוספו 19,060 בתים, 11:47, 1 בספטמבר 2010
ביטול גרסה 5876 של [[Special:Contributions/87.68.229.138|87.68.229.138]] ([[User talk:87.68.229.138|שיחה]])
'''[[אינפי 2 לתיכוניסטים תש"ע - שאלות ותשובות - ארכיון 12| ארכיון 12]]''' - תרגיל 9
 
'''[[אינפי 2 לתיכוניסטים תש"ע - שאלות ותשובות - ארכיון 13| ארכיון 13]]''' - תרגיל 10
 
'''[[אינפי 2 לתיכוניסטים תש"ע - שאלות ותשובות - ארכיון 14| ארכיון 14]]''' - תרגיל 10
 
'''[[אינפי 2 לתיכוניסטים תש"ע - שאלות ותשובות - ארכיון 15| ארכיון 15]]''' - תרגיל 10
 
'''[[אינפי 2 לתיכוניסטים תש"ע - שאלות ותשובות - ארכיון 16| ארכיון 16]]''' - לקראת המבחן
 
'''[[אינפי 2 לתיכוניסטים תש"ע - שאלות ותשובות - ארכיון 17| ארכיון 17]]''' - לקראת המבחן
=שאלות=
'''תומר''' - הסמסטר הולך ומסתיים לו . מי שרוצה לקבוע איתי פגישה ("שעת קבלה " ) - מוזמן לעשות זאת ועדיף לא לדחות עד סוף הסמסטר ממש ובסמוך למבחן ! שילחו לי מייל לתיאום : yaniv_to@netvision.net.il
==שאלה==
 
יהיה במבחן פונקציות עם שתי משתנים?
:לא שידוע לי, אם המרצה אמר שיהיה אז יהיה, אם לא אז לא
 
תומר - מה פתאום שיהיה משהו שלא למדתם ??? הגיון חבר"ה , הגיון !
 
==שאלה==
תחת אילו תנאים ניתן לומר שאינטגרל על סכום אינסופי של פונקציות שווה לסכום האינסופי של האינטגרלים של הפונקציות?
תודה
 
תומר - מפנה אותך לנוסח משפטים המתאימים ! יש משפטים שמתארים תנאים מספיקים לכך . ייתכן שיהיו מצבים נוספים שזה יתקיים אבל אז צריך לבדוק כל מקרה לגופו.
תגידו, לא שאני רוצה- אבל יהיה תרגיל 10 השבוע או שקיבלנו שבוע חופש מתרגיל?
:יהיה תרגיל, עוד לא החלטנו לגבי תאריך ההגשה.
::יש לי בקשה מכם - והיא בשם הרבה מאיתנו - בשבוע הקרוב יש בגרות בלשון (שבניגוד לתקופה שלכם, ארז ותומר, חלקו אותה לשני חלקים, וההבעה מהווה מחצית ממנה, כולל חיבור, כלומר כבר לא כל אחד יכול להוציא 100 בלי להתאמץ, וכרגע מי שמוציא מעל 90 נחשב לגאון), ו-4 ימים אח"כ יש בגרות בהיסטוריה (...) אין לי בעיה להגיש אפילו 3 תרגילים ביחד, אבל אפשר שהכל יקרה אחרי הבגרות בהיסטוריה, כלומר אחרי ה-21 בחודש? (ורצוי שלא ביום שאחריה...) תודה רבה!
:::ראיתי שהוספתם תרגיל 10 אתמול בלילה (חמישי-שישי). למתי צריך להגיש אותו?
==שאלה==
אם נניח יש לי טור פונקציות שרץ על fn (הסדרה המזהה שלו). למה אם הטור |fn| מתכנס במ"ש בקטע IבI, למה זה אומר שהססאז גם הטור המקורי מתכנס במ"ח שלו חסומה במשותףש בI? :)
:(לא ארז/תומר) מה *נקודתית זה חסומה במשותף?הכוונה היא שקיים M כך שלכל X בקטע ולכל K טבעי מתקיים: הערך המוחלט של Fk(x) קטן שווה מMברור מאינפי 1. לבמ"ש ההוכחה דומה. שארית הטור לא בהחלט קטנה משארית הטור בהחלט, כלומר הטור לא בהחלט מתכנס מהר יותר מאשר הטור בהחלט.
ועוד שאלה: אם יש לי סדרת פונ' fn כך ש|fn| מתכנסת לפונ' גבול כלשהי f במ"ש, האם זה אומר שfn המקורית מתכנסת לf1 כלשהי במ"ש?
::בוא ניקח את הטור שהאיבר הראשון שלו הוא הפונקציה *ברור שלא.... אינפי 1. <math>\frac{fn=(-1}{x})^n</math> ושאר איבריו הם אפסלא מתכנס בכלל, בקטע הפתוח (0,1). הטור כמובן אבל הערך המוחלט מתכנס במ"ש שכן הפרש בין הפונקציה הגבולית לסדרת הסכומים החלקיים הוא תמיד אפס קבוע. אבל סדרת הסכומים החלקיים היא קבועה על הפונקציה <math>\frac{1}{x}</math> שאינה חסומה.:::אז הטענה בעצם אינה נכונה? השתמשנו בזה בהוכחת משפט אבל. (רגע, למה ההפרש בין הפונק' הגבולית לסס"ח הוא 0 קבוע? הפונק' הגבולית שווה ל0 והסס"ח הוא 1/x. הערך המוחלט של ההפרש ביניהם הוא גם 1/x
אני מקווה שאני יש טעות בסיכום במשפט פרמה, לא טועה, אתה יכול לנסח איך בדיוק השתמשתם בזה בהוכחה? בכל אופן הפונקציה הגבולית המשפט הראשון בעמוד הראשון של הטור הינה <math>\frac{1}{x}</math> ולא אפסהסיכום. מה פתאום אפס? הרי זה סכום הפונקציות ויש כאן פונקציה אחת בלבד.באופן כללי אם <math>u_1=f(x),u_2=u_3=...=0</math> אזי הטור <math>\sum_{i=1}^{\infty}u_i=f(x)</math> כי <math>\forall n : S_n(x)=f(x)+0+0+...+0=f(x)</math>התנאים לא צריעכים להיות הפוכים???
::כן*נכון מאד, צודק לגבי ה1/x (בטעות השאפתי בראש הסרתי את x לאינסוף במקום את n)הסיכום. במשפט אבל אמרנו שהטור bkהמשפט אומר שאם יש מקסימום/מינימום והפונקציה גזירה הנגזרת הינה אפס. בוודאי שאם הנגזרת אפס אין שום הכרח שיהיה מינימום/מקסימום (לדוגמא x^3) qq מתכנס במ"ש בI ומכאן שהסס"ח שלו חסומה במשותף שם..
שאלה::: בטוח שסדרת הסכומים החלקיים ולא הסדרה עצמהאיך מוגדר אינטגרל של פונקציה ממינוס אינסוף לאינסוף? גם עבור הסדרה רק החל הגבול כאשר c רץ לאינסוף של אינטגרל של הפונקציה מc-n מסוייםעד c או פשוט פיצול לשני אינטגרלים לא אמיתיים ואז כל אחד שואף בקצב שלו? זה משנה כי במקרה של פונקציה איזוגית-למשל x באפשרות הראשונה זה 0 ובשניה אינסוף פחות אינסוף שזה מתבדר.....(נכון?)תודה.
==שאלה==מה נסגר עם הבחנים? תודה, נזכה לראותם?*הוא מוגדר בתור הסכום של שני אינטגרלים לא אמיתיים. האינטגרל על הפונקציה x למשל מתבדר.
'''תומר''' - כרגע התכנון הוא לעשות לכם פתיחת מבחנים , מועד ב למי שזכאי , ושיעור השלמה - כולם באותו יום כדי להיות יעילים . מועד על כך יפורסם בהקדם .
==שאלה==בפתרון לשאלת האתגר, למה הפונקציה מוגדרת על הקטע [aאם f פונקציה רציפה,b]מחזורית ואי-שלילית בממשיים(f אינה זהותית אפס) אז הגבול של f(x)/x^3 אינו אפס כאשר x שואף לאינסוף? ? הרי f חסומה מהנתונים,לא יתכן מצב בו היא לא מוגדרת למשל בנק' אחת בקטע הסגור? רוני נתן שאלה כזאת ואמר להוכיח שהאינטרגל של f(נניח אי רציפות סליקהx)/x מ1 עד אינסוף מתבדר..ואם הגבול שאמרתי מקודם שווה ל0 אז לפי מבחן ההשוואה האינטגרל מתכנס, אז כנראה שהגבול איננו 0,למה?? לא צריך לדרוש מראש שהפונק' תהיה מוגדרת בקצוות?(אחרת, אי אפשר לדעת שהפונק' חסומה)
===תשובה===
הנתון הוא שהפונקציה מוגדרת. אחרת המשפט לא בהכרח נכון (קח לדוגמא פונקציה שלא מוגדרת על כל האי רציונליים, וברציונליים היא הזהות).
==שאלה==תרגיל 10 שאלה 2אם f לא רציפה בהכרחתומר - כמה שאלות , איך יתכן שיש כמה שאלות ! :) לשאלה הראשונה על התכנסות עם ערך מוחלט גוררת התכנסות בלי , במידה שווה?- ראה משפט שהוכחתם . או - אפשר לנסות לבד פשוט ביישום של קריטריון קושי להתכנסות במ"ש ! .
אינטגרל ממינוס אינס' לאינס' מוגדר על ידי פיצול באיזו נקודת ביניים - אבל בכל אופן כאשר הגבולות שלהם - אחד עם פרמטר לאינסוף ושני עם פרמטר למינוס אינסוף - הם לא תלויים אחד בשני ! ובטח לא ממינוס סי לסי כאשר סי שואף לאינסוף . זהו אינטגרל שקיים בשימושים אבל יש לו שם - PRINCIPAL VALUE - אבל זה לא האינטגרל בקורס שלנו !!! .
 
לגבי שאלה אחרונה - תן בבקשה את ניסוח השאלה המלא כדי שאוכל להתייחס .
 
==שאלה מסודרת ==
נתונה פונקציה fרציפה,מחזורית ואי-שלילית ב-R. היא אינה זהותית 0.הוכח: האינטגרל של f(x)/x מ-1 לאינסוף מתבדר. תוכל גם להגיד לי למה אי אפשר להוכיח שזה מתכנס עם שימוש במבחן ההשוואה השני? כי f לפי הנתונים חסומה,לא? ואז הגבול של (f(x)/x)/x^2 שווה לאפס ולפי המבחן f(x)/x מתכנס, כי האינטגרל של x^2 מתכנס...
===תשובה===
כי אז גם הפונקציות f_n (לא יהיו רציפותארז/תומר) נראה לי שהטעות שלך היא כזו , כשאתה עשית את מבחן ההשוואה, עשית את זה עם הפונ' x^2 והאינטרל של זה מתבדר בקטע 1 עד אינסוף (אתה מתבלבל עם 1/x^2):אבל אמרתי בקטע 1 עד אינסוף...לא מאפס!::הוא העיר לך על הפונקציה ולא על הקטע. x^2 זו פונקציה ששואפת לאינסוף ובפרט אינה אינטגרבילית על הקטע האינסופי. ובנוגע להוכחה , אני עשיתי את זה בדרך הבאה: נסמן את המחזור של F כ-T, אנחנו יודעים שהפונ' אינה זהותית אפס, לכן יש נקודה X0 בקטע [1,1+T] כך ש- (''f''(''x0'' שווה ל-M גדול ממש מאפס. מכיוון ש-F רציפה יש סביבה [a,b] של X0 כך שכל ס בקטע מקיים f(x)>M/2 (או אפילו גדול שווה, זה לא משנה) וכעת, מכיוון ש-F אישלילית , נגדיר פונקציה חדשה G להיות M/2x בכל קטע מהצורה [a+n*T,b+n*T] כאשר n טבעי ואפס בכל נקודה אחרת. ברור כי שתי הפונ' אי שליליות, אינטגרביליות בכל קטע מהצורה [one,R] כש- R>1 (F רציפה בכל קטע כזה, ול-G יש מספר סופי של נקודות אי רציפות מהסוג המתאים) ולכן אם האינטגרל של G בטע 1 עד אינסוף מתבדר, כך גם האינטגרל הלא אמיתי של F. ועכשיו, להראות שהאינטגרל של G בקטע 1 עד אינסוף מתבדר, זה לא כזה מסובך (אני עשיתי לפי קריטריון קושי, אבל אני בטוחשאפשר בעוד דרכים, ואין לי כח לכתוב את זה) ובסה"כ קיבלנו שהאינטגרל של f(x)/x
==שאלה==
מה שאומר התנאי זה בעצם למה במבחן ההשוואה הראשון רוני ציין שאם 0<g ו f>g והאינטגרל של f מתכנס(לא אמיתי, בשנ הסוגים הוא אמר ככה...) אז האינטגרל של g מתכנס. הוא לא אמר שאם fn רציפות וההתכנסות במידה שווהg מתבדר גם f מתבדר, זה גורר שf רציפהלא נכון??
===תשובה===
כןהמשפט השני הוא היקש לוגי מהראשון. לא יכול להיות שf יתכנס אבל g יתבדר, לכן אם g מתבדר אזי f מתבדר.
יכול להיות שf_n רציפות וf רציפה אבל ההתכנסות אינה במ"ש. ==שאלה==
יכול להיות שf_n אינן רציפות וההתכנסות בתרגיל 11 שאלה 3 - לעוד מישהו יצא רדיוס התכנסות אפס?:: [לא תומר או ארז] לי דווקא יצא 1==שאלה==אם אני צריכה להוכיח שפונק' כלשהי היא במ"ש אבל f רציפהאינטגברילית רימן, והראיתי שהסכום רימן שלה לכל חלוקה מתאימה ולכל בחירה אלפא חסומה בין הסכום רימן של פונק' אינטגרבילית(!) אחרת פחות אפסילון, ואותו סכום ועוד אפסילון. האם זה מראה לי שהפונק' שלי אינטגרבילית גם? ויותר מזאת, שואפת לסכום I של אותה הפונקציה השניה?:הסכום רימן של הפונקציה האחרת עבור אותה חלוקה? ומה זה האפסילון הזה? במה הוא תלוי?
יכול להיות שf_n אינן רציפות וההתכנסות היא במ"ש אבל ==שאלה==נתון כי f כן רציפהאינטגרבילית וחסומה ע"י M.צ"ל שf^2 אינטגרבילית באותו קטע.יש דרך להראות את זה לא ע"י הרכבת פונקציות (שבדרך זו הנתון ע"י החסימות מיותר)?מהי הדרך?
וכו'.:הנתון על חסימות מיותר איך שלא תסתכל על זה, שכן זו פונקציה אינטגרבילית (ולכן חסומה)
==שאלה 1 סעיף ג==באיזה קטע מדובראבל יש דרך להראות את זה חוץ מהרכבה של פונקציה רציפה ופונקציה אינטגרבילית?
'''תומר''' - הכוונה OTHER - לכל X ממשי מידת קבוצת נקודות אי הרציפות של הפונקציה החדשה היא אפס ? ... (לא ארז/תומר) כן יש פיתרון אחר, והוא בעזרת תנאי רימן לאינטגרביליות.f^2 חסומה (ברור), ונותר להראות את התנאי השני.בקשר אליו, קל להראות ש w(f^2)<= w(f)*2*M (כאשר w הוא התנודה בקטע), ומכאן קל להמשיך. מראים את זה כך, לכל x1,x2 בקטע כלשהו מתקיים:f(x1)^2-f(x2)^2<=(f(x1)-f(x2))*(f(x1)+f(x2)), ומכאן זה ברור
==שאלה==
מתי מגישים התבקשתי להביא דוגמה לסדרת פונק' fn רציפות ב[0,1] כך שfn(x)-->0 לכל X בתחום, אך האינטגרל של fn מ0 עד 1 אינו שווה ל0. - האם הפונקציה x^n(x^n-1) qq מקיימת את תרגיל 10הדרוש?הפונק' אכן רציפות ב[0,1], פונקצית הגבול היא 0, אבל האינטגרל יוצא, אם אני לא טועה, 1/n פחות 1/(2n+1)..
===תשובה===
במפגש הבא שלנואתה בטוח שהאינטגרל שונה מאפס ולא '''שואף''' לאפס? כי כמעט כל סדרה שתבחר תעמוד בתנאי הראשון (למשל הסדרה של הפונקציות הקבועות <math>\frac{1}{n}</math>). נודיע  אם אתה רוצה סדרה שהאינטגרל עליה אינו שואף לאפס, קח סדרה של פונקציות הבאה: הגרף של הפונקציה ה-n הוא משולש עם בסיס <math>\frac{1}{n}</math> בגובה 2n וכל שאר הפונקציה היא אפס. הסדרה הזו שואפת לאפס (כמובן שלא במ"ש) והאינטגרל על התאריך כשנדע אותוכל פונקציה בסדרה הוא תמיד 1.
==שאלה==
בתרגיל 4נראית נחמדה. f:[0, סעיף ד1] ---> R היא פונקציה רציפה אי שלילית המקיימת f(x)<=sinx לכל x בתחום. צריך למצוא את כל פתרונות המשוואה: cosx+quad(f,0,x)-1=0.(קוסינוסX ועוד האינטגרל של f מ0 עד x פחות 1 = 0.)מעבר לעובדה שx=0 הוא פתרון אחד של המשוואה, לא הצלחתי להוכיח שלא קיימים עוד פתרונות/למצוא פתרון נוסף. ניסיתי להניח שקיים ולהשתמש במשפט רול, ניסיתי להשתמש בזה שאי שיוויון ברמת הפונק'==> אי שיוויון ברמת האינטגרל אבל בסופו של דבר לא הגעתי למשהו שמוכיח. יש רעיון למישהו?: מה הכוונה על הישר:מישהו? על כל הממשיים?
תומר '''טקסט מודגש''' - שיניתי למספרים החיוביים - נוסח חדש יפורסם בקרוב. ( הכוונה היא בתחום ההגדרה אך למען הסדר הטוב שיניתי זאת למספרים הממשיים החיוביים ) .
:כלומר בתחום (0,infinity)?
::כן, ראה תרגיל מעודכן:אם f=sinx אזי זו הפונקציה הקבועה אפס. אם f קטן ממש מהסינוס אזי הנגזרת בעלת סימן קבוע (שלילי) והפתרון היחיד הוא אפס 
==שאלה==
בשאלה 1 בסעיף ג'מישהו מוכן להסביר לי באילו מקרים כדאי לעשות גזירה איבר איבר, מותר לומר שהפונק' מתכנסת נקודתית בטוח כי היא מקבלת רק שני ערכים קבועיםומתי לעשות אינטגרציה איבר איבר? וכשn שואף לאינסוף זה לא ישנה אותםתודה.:כדאי? (בעצם פונק' הגבול תהיה 0 תמיד.מותר? כאשר יש התכנסות במ"ש לפי המשפטים שלמדתם בכיתה. כי X הוא מס' ממשי)
==שאלות מעניינות==
* הוכח או הפרך:
תהי <math>f_n(x)</math> סדרה של פונקציות גזירות ברציפות המתכנסות במ"ש לפוקציה <math>f</math>, אשר גם גזירה ברציפות,ב-<math>[a,b]</math>.
אזי ש- <math>f_n' \rightarrow f'</math> במ"ש על הקטע <math>[a,b]</math>.
* בנוגע למשפט דיני לטורים, נניח שיש לי טור <math>u(x)=\sum_{n=1}^{\infty}a_n(x)</math>, כך ש-<math>a_n(x)>0</math> והטור מתכנס ב-I.
מתי אני יודע אם הפונקציה הגבולית רציפה, כך שאוכל להישתמש בדיני ולקבוע שההתכנסות במ"ש.
נשמח לתשובה ממישהו,די דחוף! תודה!!! :)
===תשובה===מה הקשר בין מספר הערכים שפונקציה מקבלת לבין קיום גבולתומר - אם ניקח את הסידרה cosnx ונחלק הכל ב n . האם קיבלת סידרה שמתכנסת במ"ש ?:קצת הסתבכתי ומה עם ההוכחה הפורמלית ממש לפי הגדרת הגבולנגזרותיה ? ...::אז תתאמץ עוד קצת. חשוב שתבין כיצד מחשבים גבול נקודתי. זה לגבי דיני - פשוט לבדוק רציפות לפי הגדרה - גם לא מסובך, פשוט מניחים שx הוא קבוע (כמו פרמטר)אמרת שהפונקציות בסידרה רציפות - שים לב לתנאי המשפט ! .
==שאלה==
ב1 הכוונה היא לבדוק אם הפונקציה מתכנסת נקודתית שאלה שנתקעתי עליה ואשמח לכיוון: int(arctan(x)/[(x*(ln(x+1))^2)], x = 0 .. infinity) ניסיתי דיריכלה, חשבתי על השוואה, ופשוט לא מצאתי. אשמח לעזרה ::מצטרף לשאלה!! איך פותרים את הדבר הזה?  (לא ארז/תומר) תנסה השוואה עם אחד חלקי [x*ln(x)^2]. שים לב ש arctanx שואף באינסוף לחצי פאי, ושעם קצת אלגברה אפשר להוכיח שמנת ה-ln-ים שואפת לאחד. כדי להראות התכנסות של האינטגרל החדש, אפשר להשתמש בהצבה t=ln(x), או במלחילופין להשתמש במבחן האינטגרל+מבחן העיבוי לטורים תודה רבה :) זה לא נכון, כי יש בעיתיות גם בנקודה x=1 וגם באינסוף. ההשואה שנתת עוזרת רק לחלק של האינסוף : אבל אני לא חושב שאמורה להיות בעיה, כי זאת בעיה בנקודה, וזה לא אינטגרל לא אמיתי מסוג שני. ::אתה מפצל את זה לשני אינטגרלים: האינטגרל מ-1 עד אינסוף מתכנס (כי מורידים את ה-ln בעזרת אי שוויון והאינטרגל (arctanx/x^2) מתכנס (השוואה עם 1/x^2)...::עכשיו בקשר לאינטגרל מ-0 עד 1 אתה יודע ש- ln(1+x)<x לכל x ב-[0,1] ולכן האינטרגל שלנו גדול מהאינטגרל של arctan(x)/x^4 וזה מתבדר ע"פ השוואה עם 1/x^4 שמתבדר בקטע [0,1], ולכן זה גדול מאינטגרל מתבדר וזה סה"כ מתבדר. (אשמח לקבל אישור מאחד המתרגלים =) ). :(לא ארז/תומר) עבור האינטגרל מ-0 עד 1, תנסה מבחן השוואה גבולי עם אחד חלקי x^2 . שים לב ש בקטעים הנתוניםarctanx/x שואף לאחד וש ln(1+x)/x גם שואף לאחד כאשר x שואף לאפס. ובקשר לזה שכתב מעלי- ה-x במכנה הוא לא בריבוע... :: האמת שהאינטגרל המקורי היה בין 1 לאין סוף וזאת טעות שלי שכתבתי אפס, כןאבל זה באמת יהיה טוב לדעת מה קורה גם אם זה היה אפס.:: תודה לשניכם :) ==שאלות.==*arctanx חיובי בקטע 1,infinity לא?היה תרגיל באחד המבחנים ששמו ערך מוחלט מסביב לarctan, באנטגרל שהתחום שלו הוא תהחום המצוין..*במבחן ההשוואה הגבולי. מותר לי להשוות פונק' חיובית עם פונק' שלילית, אם הגבול יוצא חיובי? לדוגמה, הפונקציה sinx חלקי x*lnx. בתחום [0.5,1], נניח ואני רוצה להשוות עם sinx חלקי x-1..*כאשר אני מפצלת אינטגרלים ל2 תחומים שונים [עם דגש על השונים!]. אם אחד מהם מתבדר, כל האינטגרל המקורי מתבדר, נכון? בלי קשר לחיוביות/שליליות של אחת הפונקציות.. *בהמשך לשאלה שלמעלה - אם יש לי שאלה של 'לאילו ערכי אלפא', כאשר יש לי חיבור של 2 אינטגרלים - אחד ל"א מסוג ראשון והשני ל"א מסוג שני.. אז אם למשל עבור alpha>1 האינטגרל מסוג 1 מתבדר, אין מה לבדוק את האינטגרל השני גם? וזהו, תודה רבה!
===תשובה===
*כן, או בכלל לא הוא חיובי.*אם זה המצבבתחום הפונקציה אי חיובית אז אם תכפלי אותה במינוס תקבל פונקציה אי שלילית. כמובן שמכפלה במינוס לא משנה התכנסות אינטגרל*נכון.*נכון
==שאלה==::כן, אבל כשהפונק' הייתה שלילית, הגבול יצא לי חיובי. אם אני כופלת במינוס 1, הגבול יוצא שלילי..האם תרגיל 10 הוא התרגיל האחרון?תודה!:::לא יכול להיות שהגבול של המנה של שתי פונקציות אי שליליות יהיה שלילי:נראה:::::: כעיקרון אני מדברת על הפונקציה sinx חלקי x*lnx. בתחום [0.5,1] אני משווה אותה עם sinx חלקי (1 פחות X). (יום יבוא ואני אלמד להשתמש בכתיב המתמטי של ויקיפדיה... מצטערת על הסרבול). בכל מקרה, שתי הפונקציות חיוביות בתחום הזה. אבל הגבול של המנה, כאשר X שואף ל1 מצד שמאל, הוא מינוס אחת..
:כי ln שלילית בקטע הזה.::אוקי, אז בעצם מכפילים את הפונק' המקורית ב1- ואז מקבלים גבול חיובי, ואומרים שבגלל שהפונק' עם המינוס מתכנסת/מתבדרת == שאלה על תרגיל 10 שאלה 5 ==האם בשאלה זו f היא בהכרח פונקציה רציפה> כך גם הפונק' המקורית?
:לא.נכון
==שאלה==
יש לי שאלה שיכולה להיות אולי משפט נחמד - נניח שיש לי סדרת פונקציות *רציפות* לפי n בקטע כלשהו (גם אם הוא פתוח), שהן חסומות, וערך הקיצון שלהן (בערך התכנסות במ"ש של ערך מוחלט) שואף לאפס כאשר n שואף לאינסוף, וכך גם הגבולות של הקצוות, האם ניתן לומר שסדרת הפונקציות הזו מתכנסת ל-0טור הפונק' גוררת התכנסות במ"ש של טור הפונק'?:כבר נשאל בעמוד זה. כן מכיוון שהשארית של טור קטנה או שווה לשארית של הטור בהחלט
===תשובה=שאלה==כן*הסתבכתי, זה אומר שהחל מ-n מסוים הפונקציה בערך מוחלט קטנה מאפסילון בכל נקודה (כאשר ערך הקיצון והקצוות שלה קטנים ממנו) כלומר <math>\forall n>n_0,\forall אפשר עזרה?*נניח שהפונקציה f מוגדרת ורציפה בקטע סגור x:|f_n(x)-0|<\epsilon</math>=a. לכן הסדרה מתכנסת .b הוכח כי הסכום מאחד עד אינסוף של f^n מתכנס במ"ש לאפסבקטע זה אם ורק אם הסכום הנל(f^n) מתכנס נקודתית בקטע זה.
==שאלה - גבול של סדרת פונקציות==
מותר לי לומר שסדרת פונקציות מתכנסת לשתי פונקציות גבול (כתלות בתחום, שתלוי ב-n)? אם שני התחומים הללו מכסים את כל הישר, האם מותר לי לומר עקב כך שתחום ההתכנסות הוא כל הישר?
===תשובה===תחום בוודאי ''':השאלה לא תלוי''' בnמנוסחת טוב. מה זה f ומה הוא קשור? מה ההבדל בין סכום מאחד עד אינסוף לבין טור?תיקנתי...מה הבעייה בהגדרה של f פשוט פונקציה f(x)
התכנסות הינה נקודתית, ולכן התכנסות בקטע אומרת התכנסות בכל נקודה ::שאלתי מה הקשר של הקטעf. אם הסדרה מתכנסת על כמה קטעים, אז גם g היא מתכנסת בכל נקודה מכל אחד מהקטעים ולכן פונקציה אבל היא מתכנסת על איחוד הקטעיםקשורה לשאלה בדיוק כמו f... האם היא פונקצית הגבול של הטור? האם הפונקציות בסדרה רציפות?
התכנסות : (לא ארז וגם לא תומר) בעצם הכיוון המעניין היחיד הוא מהתכנסות נקודתית לבמ"ש. אם f^n מתכנס נקודתית אפשר לראות כי לכל x נקבל f(x<1 (בערך מוחלט, הלוואי שזה לא היה קופץ כל הזמן). f רציפה לכן הערכים שהיא מקבלת מהווים קטע סגורc,d בתוך [-1,1), קטע בו הטור x^n מתכנס במ"ש זו שאלה אחרת קצת. לכן כל סדרת נקודות אינסופית שתבחר בa, יש לכם שאלה דומה בתרגיל הביתb עבור הטור לפי f שקולה בעצם לבחירת נקודות בc,d עבור הטור של x המתכנס שם במ"ש (ולפי מבחן הLIMSUP בעצם זה כל מה שצריך).
==פונקציה הופכית של פונקציה מונוטונית==איך ניתן להראות שאם <math>f: [a,b] \rightarrow [c,d]</math> מונוטונית בקטע <math>[a,b]</math>אזי גם הפונקציה ההפוכה שלה, לאמור <math>אבל למה f^{(x) בערך מוחלט קטן מ-1}?: [c,d] \rightarrow [a,b]הסברתי במפורט בתשובה. לא בהכרח f</math> מונוטונית בקטע <math>[c,d]</math>1 פשוט אם הוא מתכנס הוא קטן מאחד ולכן מתכנס במ"ש. אם הוא מתכנס במ"ש ברור שהוא מתכנס. זה כל מה שצריך להוכיח.
===תשובה===
אם a<b אזי אה.... התבלבלתי בין f_n לf^n.... מצטער.  הכותב מעליי צודק שהטור מתכנס כאשר <math>|f(ax)|<1</math>, והוא מתכנס במ"ש כאשר <math>|f(bx)|<r<1</math>אבל בגלל שהפונקציה רציפה על קטע סגור ונניח מתכנסת בו אזי היא מקבלת מינימום ומקסימום ושניהם חייבים להיות קטנים ממש מאחד (אחרת היא לא הייתה מתכנסת בהם) ולכן התנאי מתקיים. נובע מכך שאם   * על מנת להוכיח שהוא מתכנס במ"ש בתנאי למעלה <math>|f(bx)|<r<1</math> כל שצריך הוא מבחן הM<math>|f(ax) \in [c,d]^n|<r^n</math> אזי b<a כלומר.  * על מנת להוכיח שהוא מתכנס עבור התנאי <math>f^{-1}(|f(b)x)|<1</math> כל מה שצריך הוא להסתכל נקודתית על הטור <math>\sum |f^{-1}n(x)|=\sum a^n</math> כאשר <math>|f(a)x)|=a<1</math>וזה כמובן מתכנס. * טריוויאלי שהוא יתבדר בכל מקום אחר.
כמובן שצריך לשים קטן* על מנת להוכיח שהוא לא מתכנס במ"ש אם לפונקציה לא היה מקסימום אבל הsup שלה היה אחד: ניקח סדרה <math>x_n</גדול שווה במקומות המתאימים.math> כך ש <math>f(x_n) \rightarrow 1</math> ולכן <math>\lim_{k\rightarrow \infty} sup|S(x)-S_k(x)|>\lim_{k\rightarrow \infty} |S(x_{n_k})-S_n(x_{n_k)}| = \infty</math>
: תודה רבה!(נבחר את n_k על מנת שההפרשים ישאפו לאינסוף. אנחנו יודעים שזה מותר כי <math>f(x_n)\rightarrow 1</math>)
==שאלה==
האם בשאלה 4 אם יש לי פונקציה ואני מפתח לה טור חזקות נניח עם הטוריםרדיוס 1,מותר להיעזר במבחני דיריכלה ואבלאיך אני מוודא לאחר הפיתוח שהפונקציה שווה לטור בקטע?וגם פה שאלה 4 כוון כללי אם אפשר...http://moodle.technion.ac.il/file.php/1098/Exams/2004-2005-spring-test-a.pdf
===תשובה===
ניתן להשתמש בכל משפט הוא שווה לפונקציה רק ברדיוס ההתכנסות. מה הכוונה איך אתה מוודה? אם פתחת נכון זה חייב להיות שווה - הצעדים שלמדנולפיתוח פונקציה לטור חזקות הם צעדים בהם השיוון בסוף חייב להתקיים (למשל פונקציה קדומה ששווה בנקודה אחת לטור החזקות [עדיף לבדוק את הנקודה אפס כמובן])
תומר - אוסיף עוד שבשיעור ההשלמה נעבור גם על מבחנים אלו ועל טורי חזקות
==שאלות==1. האם כל ה-"מבחנים"לגבי השאלה השנייה כבר שאלו אותה, כגון - משפט דיני, ומבחני התכנסות למינהם, תקפים גם כאשר הקטע הינו אינסופי? למשל ב- <math>[0,+\infty]</math>תסתכל בארכיון 17
אבל אתה יודע שאם קיים טור חזקות המקדמים הם אלו של טיילור, למשל הפונקציה f(0)=0 f(x)=exp(-1/x^2. בשאלה 3 מה הכוונה ) sהיא שווה לטור החזקות רק באפס למרות שהטור מתכנס בכל קטע סופי על הישר? (הוא תמיד אפס כי כל הנגזרות באפס הן אפס)מה התרומה בכך?שאני שואל זה איך הייתי יודע להבחין שהם שווים רק באפס למרות שהטור מתכנס תמיד, רק שזה לא תמיד לערך הפונקציה?
===תשובה חלקית===לגבי דיני, תחשוב על הטור <math>\sum \frac{1}{:אל תבלבל. הקטע עם הבדיקה בנקודה זה רק כאשר הוכחת שהפונקציה שלך היא קדומה של טור חזקות כלשהוא ועשית אינטגרציה איבר איבר. באופן כללי למדתם משפט אחד שמאפשר לכם להניח שטור החזקות עם מקדמי טיילור הוא אכן הפונקציה וזה כאשר הנגזרות חסומות (1-\frac{1}{x}ראה את ההשלמה)^n}</math> בקטע <math>[1,\infty]</math>. במקרים אחרים (כמו זה שתארת) אסור סתם להניח שיהיה שיוויון.
תחשוב על כן, אבל בתכלס אם קיים טור חזקות המקדמים שווים למקדמי טיילורמה שאתה אומר זה מול ההוכחה של דינילהתייחס "כאילו" אנחנו לא יודעים את זה ולעבוד בשיטות אחרות כן? (במקרה והנגזרות לא בהכרח חסומות)
:מה זה משפט דיני? האם הקבוצה של שיין למדה אותו?::כן. יכול להיות שתשתמש בטריק כי אתה לא יודעלהוכיח שהפונקציה שווה לטור חזקות, אבל גם יכול להיות שזה פשוט יהיה קל יותר מאשר לחשב את הנגזרות מכל סדר. מבחן דיני אומר שאם יש לך טור של פונקציות רציפות אי שליליות ופונקצית גבול הטור הינה רציפה אזי הטור מתכנס במ"ש. נובע מכך שטור של פונקציות רציפות אי שליליות מתכנס במ"ש אם"ם סכום הטור הינו פונקציה רציפה. (המשפט נכון, כאמור, על קטע סופי [a,b].)
==תיקון קל לתרגיל==בשאלה 4 א' הטור צריך להתחיל מ-n=2, מפני שהמכנה בשבר בתוך ה-ln לא מוגדר עבור n=1.סבבה תודה רבה
==שאלה== המבחן ב15:30 נכון תודה? כמה זמן הוא יארך??? כן, שעתיים
==שאלה==
יש לי שאלה אני פשוט מבולבל בתאריכים
מתי יש שיעור עם רוני?
למתי צריך להגיש את תרגיל 10?
ומתי יש שיעור חזרה/השלמה לקבוצה של תומר?
תודה ברה ושיהיה שבוע טוב לכולם!
מחר אין שיעור עם רונילמה הסיגמה של 2*(n+1)*3^n חלקי שורש שלישי של n! מתכנס?:אתה מתכוון ל<math>\sum \frac{2(n+1)3^n}{\sqrt[3]{n!}}</math>? תקח את השורש הn-י ותקבל 3 חלקי אינסוף כלומר שואף לאפס (הרי <math>\sqrt[n]{n!}\rightarrow \infty</math>) ==התכנסות אינטגרלים==האם האינטגרלים הבאים מתכנסים???* <math>\int_{0}^{1} \frac{\theta}{\ln(\theta)}d\theta</math>. ביום שני יש שיעור עם רוני מ4 עד 8* <math>\int_0^1 \frac{dx}{\ln(x)}</math>* <math>\int_{r=0}^{r=1} \frac{\sin(r^2)}{r}dr</math>..וב6.7 יש תרגיל עם תומרהאם אפשר לומר באינטגרל השלישי ש-<math>\int_{0}^{1} \frac{\sin(r^2)}{r}dr \leq \int_{0}^{1} \frac{r^2}{r}dr = \int_0^1 rdr = 1/2</math>,ואז עפ"י השוואה???  ===תשובה===לא לשכוח לבדוק אם האינטגרל הוא אמיתי בכלל או לא יודע שעות. אני חושב שבאותו יום יש למשל השלישי הוא פשוט בעל אי רציפות סליקה באפס ולכן אינטגרבילי (גם פתיחת מחברות וומועד ב' של הבוחן. תרגיל 10 כדאי כמה שיותר מוקדם אם אתה רוצה אותו חזרה,מה שרשמת נכון אבל לפי מה שהבנתי אפשר להגיש אותו גם בתרגיל שיהיה ב6.7. שבוע טובבלי קשר) בראשון ובשני הצד הבעייתי הינו 1.ניתן לבצע מבחן ההשוואה עם <math>\frac{1}{1-x}</math>
==שאלה==
בשאלה 4 ד', איך אפשר להוכיח / להפריך התכנסות במ"ש? כל המבחנים שלמדנו לא עובדים, בין היתר כי אי אפשר למצוא את פונקציית הסכום...
''' תומר''' - נסה להשתמש באחד הקריטריונים השקולים להתכנסות במידה שווה...
נתונה פונקציה f(x) בקטע [a,b] ונתון שהיא חסומה על ידי M. צריך להוכיח שאם f אינטגרבילית זה גורר ש-f^2 אינטגרבילית. חסימות זה לא בעיה, אבל הסתבכתי עם התנאי השני  אני יכול להשתמש במשפט שאם הפונקציות f,g אינטגרביליות בקטע כלשהו אז גם f כפול g אנטגרבילית שם, כאשר במקרה הזה g=f? :(לא ארז/תומר) ענו כבר על השאלה הזאת... לדעתי אי אפשר להשתמש במשפט, למרות שהוא נכון, כי אז התרגיל טריוויאלי. :הנה ההוכחה- יהי אפסילון גדול מאפס. בכל קטע g(x1)-g(x2)=שאלה למתרגלים==(f(x1)+f(x2))*(f(x1)-f(x2)<2M*W כאשר W היא התנודה של f בקטע. (g מוגדרת כ f בריבוע). מאינטגרביליות f קיימות חלוקה עבורה סכום התנודות קטן מאפסילון חלקי 2M. ועבור אותה חלוקה בפונקציה g סכום התנודות יהיה קטן מאפסילון.מהי רמת הקושי תומר - ומה עם מידת נקודות אי רציפות ? אם אתם יודעים שהפונקציה אינטגרבילית זה אומר שמידת קבוצת נקודות האי רציפות שלה היא אפס . מה עם נקודות האי רציפות של התרגילים בתרגיל 10הפונקציה בריבוע ? האם הם קליםהיא מוכלת בזו של הפונקציה המקורית ? קשיםואם כן מה זה אומר על מידתה ? האם ייתכנו תרגילים ברמת קושי כזו במבחן?אני שואל כדי שנוכל להעריך את רמת הידיעות שלנו לקראת המבחן...
==שאלה==
נינתנה לנו הודעה מהאוניברסיטה להתעדכן לגבי שיעור השלמה לתירגולצריך להוכיח שהטור הבא מתכנס במ"ש. בדקתי במייל ובדקתי פה ולא מצאתי שום איזכור לדבר. האם יתקיים שיעור תירגול נוסף? אם כן, מתי יתקיים? האם נצטרך להגיש את תרגיל 10 שם?f(x)= sum from 0 to infinity of (e^-nx)* cos(nx) s
:תגישו את 10 אכן ביום הזהבכל קטע (a, התאריך נדמה לי 6.7 אנחנו נודיע במסודר מה התכנון בקרוב. ביום הזה גם יהיה בוחן למי שצריך ופתיחת מחברות ושיעור השלמה כאמור.infinity] כאשר a>0
==שאלה 4==ניסיתי עם מבחן ה- m ולא הצלחתי.בשאלה 3, הכוונה לכל קטע פתוח/חצי פתוח/סגור, נכוןמישהו? אפשר להשוות עם e^-n במבחן הM לא רק לקטעים הסגורים.. הדרך היחידה שנראית לי הגיונית להוכיח את הבמ"ש היא לפי הגדרה, אבל זה מסובך מדי.. יש מצב שיהיה שימוש באיזה 'טריק' שקשור לאחד המשפטים שלמדנו?
===תשובה===אם זה נכון לכל קטע מסוג מסוים אז זה נכון לכל קטע :(הרי קטע חצי פתוח מוכל בתוך קטע סגור ובתוך קטע פתוח גדול יותרלא ארז/תומר)אני חושב שצריך להשוות עם e^-an ...
יש מצבעם e^-n וזה עובד. עכשיו בסעיף הבא הם רוצים להוכיח/להפריך שf(x) שזה הסכום הוא פונקציה רציפה ב(o, infinity). הבעיה זה שזה קטע פתוח ולא סופי.. עדין אפשר להשתמש במשפט על טור של פונקציות רציפות המתכנס במ"ש? ::תמיד משתמשים באותו טריק (לא התעמקתי בשאלה, מקווה שרלוונטי) אם ההתכנסות היא במ"ש על כל תת קטע סגור וסופי אז אפשר בעצם להוכיח לפי דיני?יוצא שפונקצית הגבול רציפה בכל נקודה בלי שתהיה התכנסות במ"ש על הקטע האינסופי/פתוח כולו. == תרגיל 11 ==מישהו יכול לכתוב שוב את הלינקים לתרגילים שבתרגיל 11, הלינקים לא עובדים לי.  :ארכיון 16...
:::אפשר להוכיח בכל דרך שהיא אכן מוכיחה
==שאלה==
ב4 ב'. אם בחרתי להוכיח לפי סכום של סדרה הנדסית שה|q| שלה קטן מ1.. יש מצב שיש טעות בתרגיל והכוונה היא לx שייך לקטע הפתוח מתי יפורסמו ציוני התרגיל והבוחן (0אני יודע שיש לנו אותם,infinityהכוונה עם פקטור, וציוני תרגיל 8/10 אם אני לא טועה)והאחוזים מהציון הסופי? כי עבור x=0, המנה יוצאת 1..
:<math>0^2=0</math>מצטרף!! תומר - יפורסם בשעות הקרובות . אני עצמי עוד בודק תרגילים שהוגשו באיחור(!) . סבלנות . יש חדש?
==שאלה==
האם זה נכון שסדרת אוקי, נניח ויש לי סדרת פונקציות, <math>(f_nואני צריכה לבדוק לאילו ערכי אלפא הסדרה מתכנסת במ"ש ב0,אינסוף (xחצי סגור))_{n=וב[0,1}^{\infty}</math>]. קודם כל בדקתי את 0 אינסוף, מתכנסת בקטע <mathוהגעתי לזה שעבור אלפא קטן מ2 ==>הסדרה מתכנסת במש.התחום השני, [a0,\infty1]</math> במ"ש אם"ם מתקיים:, מוכל בתחום הראשון - ונניח שהגעתי לזה שהסדרה מתכנסת במש בתחום זה עבור אלפא גדול מ2-. מכיוון שהתחום מוכל, זה אומר לי גם שבפרט הסדרה מתכנסת במש גם עבור אלפא קטן מ2, וביחד - עם שתי המסקנות האלה - מתכנס לכל אלפא?
<math>\lim_{n \rightarrow \infty}\lim_{x \rightarrow \infty} (f(x)-f_n(x)) = 0</math>
כאשר===תשובה===לכאורה כן, <math>f</math> זו הפונקציה הגבוליתאני לא מבין מה השאלה. פשוט הרי ברור שאם זה יכול לעזור לי בקביעה באם ההתכנסות היא מתכנס במ"שלכל אלפא גדול ממינוס 2 או קטן משתים בפרט זה מתכנס לכל אלפא.השאלה האמיתי היא אם החישובים שלך נכונים.:השאלה היא כזו - הוכחתי שעבור אלפא קטן מ2 זה מתכנס במ"ש ב0,infinity.רק רציתי לוודא שזה אומר שעבור אלפא קטן מ2 זה מתכנס במ"ש גם ב[0,1]. זה נכון?
::הדגש הוא על הקטע הסגור? אם יש התכנסות באפס אז כן, אם לא אז לא
:::כן, מדובר על קטעים סגורים. תודה:)
:לא. מה אם חוסר אני טועה או שבהתחלת ההרצאה האחרונה רוני אמר שבטווח שבין רדיוס ההתכנסות לבין המינוס שלו(לא כולל הוא עצמו)- הפונקציה מתכנסת, ואח"כ הוא אמר שהיא גם מתכנסת במ"ש קורה בצד הסופיבכל קטע סגור שמוכל בקטע הזה.....? <math>\sum\frac{1}{x^n}</math> ועבור x=1 הטור מוגדר להיות אפס:זה נכון לגבי טור חזקות, אני לא בטוח איך זה קשור פה.
::הבנתייש עוד מקום עם רדיוס התכנסות חוץ מטור חזקות??? ושאלתי כי זה נראה לי מוזר להוכיח משהו ואז להוכיח משהו ותר חזק במקום להוכיח ביחד... אבל אפשר להשאיר מהמשפט רק את הכיוון של אם ההתכנסות במ"ש אז... כי אם ההתכנסות במ"ש אזי ש-למה פה? איפה עוד אני יכול לכתוב???
<math>f_n(x)-f(x) \leq \sup_{[a,\infty]}|f_n(x)-f(x)| := A_n</math>::לא פה בפורום, ולכןהתכוונתי פה בשאלה הזו... רדיוס התכנסות זה מושג של טור חזקות, וכאן מדובר על סדרת פונקציות.
<math>\lim_{x \rightarrow \infty}(f_n(x)==שאלה==מצטער על הבורות רגע לפני המבחן-f(x)) \leq A_n</math>, אבל צריך להתקיים, כיוון שההתכנסות במ"ש, שמה זה גזירה איבר- <math>A_n \rightarrow 0</math>איבר? ואינטגרציה איבר איבר? בבקשה שלא יהיה מסובך....
ולפיכך, נקבל ש- ===תשובה===נניח ויש לך טור מתכנס <math>g=\lim_{n \rightarrow \infty} \lim_{x \rightarrow \infty} (sum f_n(x)</math>. השאלה היא מהי הנגזרת של g. אם מותר לגזור איבר-f(x)) איבר אזי <math>g' = 0\sum f_n'</math>. שים לב שזה לא תמיד נכון, רק כאשר המשפטים מאפשרים לגזור איבר-איבר.
האם הטענה הזו נכונה? ואז ניתן לפחות לשלול התכנסות במ"ש אם היא אינה מתקיימת....אינטגרציה זה דומה <math>\int g = \sum \int f_n</math>
:מי מבטיח שהגבול באיקס בכלל קיים==שאלה==אם טור חזקות מתכנס גם בR וגם בR-, זה אומר שהוא מתכנס במ"ש ב[0,R] וב[-R,0] ואז זה אומר שהוא מתכנס במ"ש ב[-R,R]?
==שאלה 1 סעיף ב'=תשובה=אני לא מצליח לקבוע באם סדרת הפונקציות הנתונה, <math>f_n(x)=x \cdot \arctan(nx)</math> מתכנסת =כן. באופן כללי אם טור מתכנס במ"ש בשני קטעים סגורים צמודים הוא מתכנס במ"ש או לא ב-<math>(0,\infty)</math>באיחוד הקטעים. כי מהירות ההתכנסות עבור אפסילון היא המקסימום בין שני הn_0 של שני הקטעים.
אפשר איזשהו רמז..?? רמזון??? משהו..??== :)==שיהיה בהצלחה לכולם! לא פחות מ100 :)
תומר - מצטרף ! שיהיה בהצלחה לכולכם - במבחן הזה ובכל אלו אחריו :איך הפונקציות האלה מתנהגות באינסוף):תודה, ותודה לכם על סמסטר נפלא (עד כמה שהיה אפשר. אינפי, אתם יודעים). תודה על התרגולים המצויינים, אפילו שהיו יותר מידי אנשים בכיתה... ותודה על ההשקעה בנו ועל כל העזרה (האתר, וכל דבר אחר). אולי תהיו מתרגלים שלנו באינפי 3?:ושיהיה בהצלחה לכולם!
:: הן שואפות לפונקציה הגבולית - <math>f(x)= \frac{\pi}{2} \cdot x</math>=לארז ולתומר==רגע אחרי המבחן, ומה עושים מכאן?וכמה ימים לפני שהאתר יתחיל לשמש, כנראה, תיכוניסטים תמימים שצעירים מאתנו בשנה, ואתם אורזים את הכל בשבילם, רציתי לומר לכם, לשניכם במ"ש, ת-ו-ד-ה ר-ב-ה!! על כל ההשקעה, הזמן, הרצון והכוח שהיה לכם להתמודד עם שתי קבוצות רועשות כמו שלנו, ועוד בקורס קשה כמו אינפי 2! שיהיה לכולנו המון בהצלחה בהמשך!
בהגדרה של התכנסות נקודתית אנחנו אומרים שהתנאי מתקיים החל מקיי כלשהוא נכון? אם נתבונן בקטע מסויים ,שהפונקציה מתכנסת נקודתית בכל נקודה בו, ונבחר את המספר פי שהוא המקסימום של כל הקייים של כל הנקודות בקטע. ואז החל מהפי הזה הפונקציה מתכנסת בכל הקטע.וזוהי ההגדרה של התכנסות במ"ש. אז זה אומר שהתכנסות במ"ש והתכנסות נקודתית בכל הקטע זה אותו דבר? כנראה שלא, אז איפה הטעות? שהמקסימום יכול להיות אינסוף? אם הוא תמיד אינסוף-איך מוכיחים את זה? תודה.
מצטרף בהחלט, המון תודה לשניכם, ואולי נתראה בהמשך...::(מצטרפת.. ממש תודה על הכול! מה נעשה בלי Math-wiki..מצטרף! זה לא ארז/תומר) הבעיה היא שלקחת מקסימום של של קבוצה אינסופיתמובן מאליו... ועם זאת, מתי נדע כמה פקטור יהיה(קבוצת ה-k-ים)בטוח יהיה. אם הסופרימום של הקבוצה הוא מספר אז אכן ישנה התכנסות במ"ש. אבל אם הסופרימום הוא אינסוף- אז אין התכנסות במ"ש.!!)
זה אומר שזה משפט חדש? אם קבוצת הקייים חסומה אז התכנסות רגילה גוררת התכנסות במ"ש?::תודה רבה על כל האיחולים - המתרגלים. (בלי קשר, אני אפרסם עוד כמה דקות פתרון למבחן בדף הקורס)
הגדרנו התכנסות רגילה של טורי פונקציותאני מסכים לגמרי עם כל השאר. אתם באמת השקעתם את כל כולכם בנו ובהצלחה שלנו. באמת רואים שאכפת לכם מאיתנו למרות כל הקיטורים, בקשות לדחיות, התחננויות ולפעמים אף בכי P=אני רק לא מבין משהו אחד. ניסיתי להבין מה הייתה התועלת בשיעורי חזרה ובתרגולים הנוספים שעשיתם, ואני לא מוצא בהם תועלת למבחן... לא עשינו אפילו תרגיל אחד שהיה אפילו דומה לשאלות שהיו במבחן (אני לא מתכוון לשאלות בדיוק כמו שהיו במבחן, אבל לפחות בסגנון ובנושאים)...  כאילו שמתם דגש בשאלות לא דומות למבחן בשביל מה?הרי ראיתם את המבחן כבר... לי אישית היה די קשה להגיע לבר אילן,לתירגולים, באותו היום אבל הגעתי בכל זאת כי חשוב לי להצליח במבחנים (כמו לכולנו), אבל בתכלס שאני מסתכל על היעילות שלהם לאחר המבחן לא במ"שעזר בכלל, אלא להיפך.כל מה שאני מנסה להגיד, זה שבתרגולי חזרה לפני מבחן, תעזרו קצת יותר בכך שתתרגלו אותנו נכון, ולא לבלבל לנו את השכל עם שאלות לא קשורות בכלל... אחר כך מתלוננים שאנחנו לא מקבלים ציונים נורמלים ואתם נאלצים לעשות פקטור סתם!תודה על הכול (וזה בשיא הכנות)כי באמת השקעתם בנו 
===תשובה===
אני אענה לשאלה שלך בשני מישורים
* הראשון והחשוב יותר: מטרתנו הראשונה והעיקרית כמורים הינה ללמד אתכם מתמטיקה ו'''לא''' להכין אתכם למבחן. הכנה למבחן הינה משנית (אמנם חשובה גם כן). קשה להגיע לבר אילן גם במהלך הסמסטר, אך אתם מגיעים על מנת ללמוד. הסיבה שאנו רואים את המבחן קודם לכן היא בעיקר על מנת לוודא איכות שלו (שאין טעויות, רמה סבירה וכדומה), עלינו להעביר שיעורי חזרה כאילו לא ראינו את המבחן.
 
*שנית, אני אפריך לחלוטין את הטענות שהעלאת:
**שיעור ההשלמה היה חלק מחומר הקורס וכלל שאלה שהופיעה כלשונה במבחן! (הוא היה לפני שראינו את המבחן). אז כבר 20 נקודות מתנה על שיעור ההשלמה והחומר שהועלאה לאתר (אני לא העברתי את השאלה פרונטלית אבל תומר כן). אמרנו לכם לקרוא את שיעור ההשלמה.
**שיעור החזרה כלל שאלה כמעט זהה לחלוטין לשאלה 3 מהמבחן (אני העברתי אותה ותומר לא).
**יום או יומיים לפני המבחן עניתי באתר על שאלה דומה לשאלה 2 במבחן, והדגשתי דברים שלא היו בשאלה המקורית כי ידעתי שזה יעזור למבחן.
**שאר השאלות, בוודאי היו דומות והתעסקו בנושאים דומים...
 
 
מעבר לכך, תודה על ההכרה בעבודה שלנו. תאמינו לנו שמה שעכשיו נראה לכם לא כיף, בעתיד אתם תראו כאתגר שהצלחתם בו. החיים הם לא מיטת שושנים, ומי היה רוצה לישון במיטת שושנים בכלל? זה דוקר!
:זה לא רק דוקר, זה גם צמיגי :P
::מתי יעלו ציוני תרגיל?
 
:::אנחנו נעלה אותם היום
==יש לי שאלה==
האם בשאלה 4ב במבחן היה אפשר להגיד שההתכנסות היא ל0 כי תנאי הכרחי להתכנסות הטור היא שאיפת האיבר הכללי לאפס
(הוכחה של התכנסות לאפס לא התכנסות במש)?
===תשובה===
התכנסות נקודתית היא ברורהכן, זה גבול סדרה. מוכיח בהחלט התכנסות נקודתית לאפס (ולא במ"ש אומרת שלכל אפסילון יש n_0 מסוים שיתאים לכל הנקודות x בקטע. כלומר כאשר ניקח את הפונקציה f_n_0 המרחק שלה מפונקצית הגבול יהיה קטן מאפסילון בכל נקודה.יכול להיות כמו שאמרת שהמקסימום הזה הוא אכן אינסוף.כפי שציינת)
אולי קצת הטעתי ברמז. יש לנו תנאי מספיק והכרחי השקול להתכנסות במ"ש. צריך לנסות לפתור את התרגיל בעזרתו.==שאלה==
התכנסות רגילה של טור פונקציות היא התכנסות נקודתית כמובן.למה מופיע לי ציון 0 בתרגיל מספר 2 אם הגשתי אותו? :S
:רגע, אז כשאני אומר במ"ש(סדרת פונקציות) לפי ההגדרה אז האן אפס שהחל ממנו התנאי מתקיים הוא תלוי רק באפסילון??לא יכול להיות תלוי באיקס?זו שאלה פילוסופית?
::n_0 הוא אף פעם לא יחיד, אפשר להגדיר אותו תלוי במיליון דברים. אבל אם יש התכנסות במ"ש, יש n_0 שתלוי באפסילון בלבד ולא באיקס (תקרא את ההגדרה). זה המקסימום של כל הn_0-ים המינימליים.תודה.==הודעה==
אם אמרו לי להגיד אם אישהוא טור מתכנס במ"ש,אן רץ מאחת עד אינסוף, הצלחתי להגיד את זה לגבי אן רץ מ2 עד אינסוף,זה בסדריש ציונים!!== מבחן == היה פקטור במבחן? למהואם כן של כמה? תודה.
:הגיע הזמן בסוף אינפי 2 מצטרף לשאלה... מאוד חשוב לנו לדעת שההתכנסות אינה יכול להשתנות על פי מספר קבוע כלשהו של איברים ראשוניםהאם להגיש ערעור או שלא. במקרה הכי גרוע זה יכול להזיז את n_0זה נכון בהתכנסות של טורים רגילים. אבל בטורים של פונקציות-מי אמר שזה במ"ש זה מוסיף עוד חלק משמעותי לפונקציה,.. והאם לגשת למועד ב או לא? בכל מקרה, אם אני אומר שהטור מתכנס במ"ש מאן שווה 2 אז זה בסדר? תודה!בקיצור ממש חשוב לנו לעת האם היה פקטור...
::מה זה במ"ש? שהטור או הסדרה מתכנסים בקצב שאינו קבוע באיקס תשאלו את המרצים, אנחנו (יש n_0 שתלוי באפסילון בלבדהמתרגלים). שינוי של מספר קבוע של איברים ראשונים יכול לכל היותר להזיז את הn_0 הזה כמספר האיברים ששינית. אפילו אם אני אוסיף לטור איבר ראשון שהוא פונקציה בלתי חסומה, עדיין בכל נקודה הטור מתכנס באותו קצב, שכן בכל נקודה הוספתי לטור איבר אחד בגודל כלשהולא יודעים.