שינויים

קפיצה אל: ניווט, חיפוש

אי-שוויון הממוצעים

נוספו 680 בתים, 13:04, 15 בנובמבר 2020
/* המספר e */
נוכיח כי הסדרה <math>a_n=\left(1+\frac{1}{n}\right)^n</math> מונוטונית עולה ממש.
 נחשב (סתם ככה בלי תירוצים נוספים) ממוצע הנדסי וחשבוני בין n+1 המספרים החיוביים הבאים (כי מותר, אז למה לא). :<math>\leftx_1=(1+\frac{1}{n}\right)^n,x_2= \left(1+\frac{1}{n}\right)\cdots \left,...,x_n=(1+\frac{1}{n}\right)\cdot ,x_{n+1}=1</math>  לפי אי שיוויון הממוצעים (שהוא נכון תמיד, גם למספרים שבחרנו ככה באופן חסר אחריות), כיוון שלא מדובר במספרים שווים, הממוצע ההנדסי קטן ממש מהממוצע החשבוני: 
:<math>\sqrt[n+1]{\left(1+\frac{1}{n}\right)^n}<\frac{\left(1+\frac{1}{n}\right)+...+\left(1+\frac{1}{n}\right)+1}{n+1}=\frac{n+2}{n+1}=1+\frac{1}{n+1}</math>
נוכיח כי הסדרה <math>b_n=\left(1+\frac{1}{n}\right)^{n+1}</math> מונוטונית יורדת ממש.
 
 
באופן דומה, נשווה בין הממוצע ההרמוני לממוצע ההנדסי של n+2 המספרים הבאים:
 
 
:<math>x_1=(1+\frac{1}{n}),x_2=(1+\frac{1}{n}),...,x_{n+1}=(1+\frac{1}{n}),x_{n+2}=1</math>
 
 
ונקבל:
 
:<math>\sqrt[n+2]{\left(1+\frac{1}{n}\right)^{n+1}}> \frac{n+2}{\frac{1}{\left(1+\frac{1}{n}\right)} + ...+\frac{1}{\left(1+\frac{1}{n}\right)}+1 }</math>
למשל עבור n=1 מקבלים כי <math>2<e<4</math>.
 
==אי שיוויון ברנולי==