שינויים

קפיצה אל: ניווט, חיפוש

אנליזת פורייה ויישומים קיץ תשעב/סיכומים/תקציר

נוספו 3,520 בתים, 13:04, 22 בספטמבר 2012
* אם <math>f\in E[a,b]</math> ו־<math>S_N</math> הסכום החלקי ה־<math>N</math>־י של טור פורייה (מרוכב או ממשי) של <math>f</math>, אזי <math>\lim_{N\to\infty}\|f-S_N\|=0</math>.
* <math>E'[a,b]</math> הוא מרחב כל הפוקנציות ב־<math>E[a,b]</math> שקיימות להן הנגזרות החד־צדדיות בכל נקודה ב־<math>[a,b]</math> למעט, אולי, בקצות הקטע.
* '''משפט ההתכנסות (משפט דיריכלה):''' תהי <math>f\in E'(\mathbb R)</math> אינטגרבילית בהחלט ב־<math>[a,b]</math> ובעלת מחזור <math>b-a</math>. בכל נקודה בה הפונקציה רציפה טור פורייה ב־<math>[a,b]</math> מתכנס ל־<math>f</math>.
:* אם <math>f\in E'[c,d]</math> אזי ניתן ליצור המשכה מחזורית שלה ב־<math>\mathbb R</math>.
:* אם <math>x_0</math> נקודת אי־רציפות אזי הטור מתכנס ל־<math>\displaystyle\lim_{x\to x_0^+}f(x)+\lim_{x\to x_0^-}f(x)\over2</math>.
::* '''תופעת גיבס:''' נניח שבנוסף <math>f'\in E[a,b]</math> ו־<math>x_0</math> נקודת אי־רציפות מסוג ראשון של <math>f</math> כך ש־<math>a<x_0<b</math>. כמו כן, <math>S_N</math> הסכום החלקי ה־<math>N</math>־י של טור פורייה של <math>f</math>. אזי קיימת סדרת נקודות <math>\{x_n\}_{n=1}^\infty</math> המקיימת <math>x_n\to x_0\ \and\ \forall n:\ x_n>x_0</math> וכן <math>\lim_{N\to\infty}\frac{S_N(x_N)-f(x_N)}{\displaystyle\lim_{x\to x_0^+}f(x)-\lim_{x\to x_0^-}f(x)}\approx0.0895\dots</math>, וזו השגיאה המקסימלית.
* '''למת רימן־לבג:''' אם <math>f</math> אינטגרבילית בהחלט אזי <math>\lim_{n\to\infty}\int\limits_a^b f(x)\sin(nx)\mathrm dx=\lim_{n\to\infty}\int\limits_a^b f(x)\cos(nx)\mathrm dx=0</math> כאשר <math>n\in\mathbb R</math> (זה גבול של פונקציה, ולא רק של סדרה).
* '''גרעין דיריכלה:''' <math>\frac12+\sum_{k=1}^n \cos(kx)=\frac{\sin\!\left(\left(n+\frac12\right)x\right)}{2\sin\!\left(\frac x2\right)}</math>. בנוסף, האינטגרל של הביטוי ב־<math>(-\pi,\pi)</math> שווה ל־<math>\pi</math>.
* אם <math>f</math> רציפה ב־<math>[a,b]</math>, <math>f(a)=f(b)</math> ו־<math>f'\in E[a,b]</math> אזי טור פורייה של <math>f</math> גזיר איבר־איבר ומתקיים <math>f'(x)\sim\sum_{n=1}^\infty\big(q_n b_n\cos(q_nx)-q_n a_n\sin(q_nx)\Big)=\sum_{n\to-\infty}^\infty \mathrm iq_nc_n\mathrm e^{\mathrm iq_nx}</math>.
* אם <math>f\in E[a,b]</math> אזי ניתן לבצע אינטגרציה איבר־איבר על טור פורייה. בנוסף, לכל <math>x\in[a,b]</math> ולכל <math>m\in[a,b)</math> מתקיים{{left|<math>\begin{align}\int\limits_m^x f(t)\mathrm dt&=\frac{a_0}2(x-m)+\sum_{n=1}^\infty\left(\frac{a_n}{q_n}(\sin(q_nx)-\sin(q_nm))-\frac{b_n}{q_n}(\cos(q_nx)-\cos(q_nm))\right)\\&=c_0(x-m)+\sum_{n\ne0}\frac{c_n}{\mathrm iq_n}\left(\mathrm e^{\mathrm iq_nx}-\mathrm e^{\mathrm iq_nm}\right)\end{align}</math>}}והטורים מתכנסים במ״ש.
:* אם <math>F</math> קדומה ל־<math>f</math> ב־<math>[-\pia,\pib]</math> אזי <math>F(x)=\frac{a_0}2x+\sum_{n=1}^\infty\left(\frac{a_n}n{q_n}\sin(nxq_nx)-\frac{b_n}{q_n}\cos(q_nx)\right)+\frac q2\int\limits_a^b F(x)\mathrm dx</math>.* '''מעבר חום:''' נתונה המד״ח <math>\frac{\partial u}{\partial t}=k\frac{\partial^2 u}{\partial x^2}</math> (<math>k</math> קבוע) עם תנאי ההתחלה <math>\forall -L\le x\le L:\ u(x,0)=f(x)</math> ותנאי השפה <math>\forall t\ge0:\ u(-L,t)=u(L,t)\ \and\ \frac{\partial u}{\partial x}(-L,t)=\frac{\partial u}{\partial x}(L,t)</math>. נניח שניתן להציג את הפתרון <math>u(x,t)</math> כמכפלה <math>X(x)\cdot T(t)</math> (זו ''שיטת הפרדת משתנים''). אזי <math>\frac{T'}{k T}=\frac{X''}X=:-\lambda</math> כאשר <math>\lambda</math> מספר חיובי (אם אי־חיובי תנאי השפה לא יתקיימו). מקבלים שתי מד״ר נפרדות: <math>\begin{cases}X''+\lambda X=0\\T'+\lambda T=0\end{cases}</math>. לגבי המד״ר הראשונה, תנאי השפה דורשים ש־<math>\lambda=\frac{\pi^2n^2}{L^2}</math> עבור <math>n\in\mathbb N\cup\{0\}</math> ולכן, עבור <math>n</math> נתון, <math>X_n(x)=a_n\sin\!\left(\frac{\pi n}L x\right)+b_n\cos\!\left(nx\frac{\pi n}L x\right)</math> פתרון עבור <math>a_n,b_n</math> כרצוננו. לגבי המד״ר השנייה, <math>T_n(t)=\exp\!\left(-k\frac{\pi^2n^2}{L^2}t\right)</math> הוא פתרון עבור <math>n</math> נתון. הפתרון הכללי של <math>u</math> הוא צירוף לינארי של פתרונות הבסיס: <math>u(x,t)=\frac{a_0}2+\frac1sum_{n=1}^\infty\exp\!\left(-k\frac{\pi^2n^2}{L^2}t\right)\left(a_n\cos\!\left(\frac{\pin}L x\intright)+b_n\limits_sin\!\left(\frac{\pi n}L x\right)\right)</math>, כאשר מתנאי ההתחלה נובע ש־<math>a_n,b_n</math> מקדמי טור פורייה של <math>f</math> ב־<math>[-L,L]</math>.* '''משוואות גלים:''' נתונה המד״ח <math>\frac{\partial^2 u}{\partial t^2}=k^2\frac{\partial^2 u}{\partial x^2}</math> (<math>k\ne0</math> קבוע) עם תנאי ההתחלה <math>u(x,0)=\varphi(x)</math> ו־<math>\frac{\partial u}{\partial t}(x,0)=\psi(x)</math> ותנאי שפה <math>u(0,t)=u(L,t)=0</math>. נניח כי הפתרון מוצג כמכפלה <math>X(x)\cdot T(t)</math> (''שיטת הפרדת משתנים'') ולכן <math>\frac{T''}{k^2 T}=\frac{X''}X=:-\lambda</math> עבור <math>\lambda</math> מספר חיובי. נקבל שתי מד״ר נפרדות: <math>\begin{cases}X''+\lambda X=0\\T''+k^2\lambda T=0\end{cases}</math>, ובאופן דומה למה שעשינו במשוואות מעבר חום נקבל <math>u(x,t)=\sum_{n=1}^\infty\left(a_n\cos\!\left(\frac{\pikn}L t\right)+b_n\sin\!\left(\frac{\pi kn}L t\right)\right)\sin\!\left(\frac{\pi n}L x\right)</math> כאשר <math>a_n=\frac2L\int\limits_0^L\varphi(x)\sin\!\left(\frac{\pi Fn}L x\right)\mathrm dx\ \and\ b_n=\frac2{\pi kn}\int\limits_0^L\psi(x)\sin\!\left(\frac{\pi n}L x\right)\mathrm dx</math>.