שינויים

קפיצה אל: ניווט, חיפוש

אנליזת פורייה ויישומים קיץ תשעב/סיכומים/תקציר

נוספו 4,137 בתים, 20:00, 18 באוגוסט 2012
המשך יבוא
להבא, אלא אם צוין אחרת, נסמן:
* <math>f</math> פונקציה.
* <math>a_n,b_n</math> הם מקדמי פורייה בטור פורייה של <math>f</math>, ו־<math>c_n</math> מקדמי פורייה בטור פורייה המרוכב.
* <math>n!!</math> היא ''העצרת הכפולה'' של <math>n</math>, והיא שווה למכפלת כל המספרים הזוגיים (אם <math>n</math> זוגי) מ־1 עד <math>n</math>, או כל המספרים האי־זוגיים (אחרת). כלומר: <math>(2n)!!=\prod_{k=1}^n (2k)=2^n n!</math> ו־<math>(2n-1)!!=\prod_{k=1}^n (2k-1)</math>.

* '''אי־שיוויון הולדר:''' אם <math>x\in\ell_p\ \and\ y\in\ell_q</math> כאשר <math>\frac1p+\frac1q=1</math> (כלומר, <math>\ell_p,\ell_q</math> צמודים) אזי <math>\sum_{n=1}^\infty|x_n\cdot y_n|\le\|x\|_p\cdot\|y\|_q</math>.
* אם <math>\mathbf u=\sum_{k=1}^n a_k\mathbf e_k</math> אזי <math>\forall k:\ a_k=\langle\mathbf u,\mathbf e_k\rangle</math>.
* ההיטל של <math>\mathbf u</math> על <math>\mathbf v</math> הוא <math>\mbox{proj}_{\mathbf v}(\mathbf u)=\frac{\langle\mathbf u,\mathbf v\rangle}{\langle\mathbf v,\mathbf v\rangle}\mathbf v</math>.
* אם <math>S=\{\mathbf b_1,\dots,\mathbf b_n\}</math> בסיס אורתוגונלי אזי הקירוב הטוב ביותר ל־<math>\mathbf u</math> ב־<math>\mbox{span}(S)</math> הוא <math>\tilde\mathbf u=\sum_{k=1}^n\mbox{proj}_{\mathbf b_k}(\mathbf u)</math>, כלומר <math>\min_{\mathbf v\in W}\|\mathbf u-\mathbf v\|=\|\mathbf u-\tilde\mathbf u\|</math>.
* '''אי־שיוויון בסל:''' <math>\|\mathbf u\|^2\ge\sum_{k=1}^n|\langle\mathbf u,\mathbf e_k\rangle|^2</math>.
* '''תהליך גרם־שמידט:''' בהנתן בסיס <math>\{\mathbf u_1,\dots,\mathbf u_n\}</math> נוכל להגדיר בסיס אורתוגונלי <math>\{\mathbf b_1,\dots,\mathbf b_n\}</math> ובסיס אורתונורמלי <math>\{\mathbf e_1,\dots,\mathbf e_n\}</math> באופן הבא: {{left|<math>\begin{array}{ll}\mathbf b_1:=\mathbf u_1,&\displaystyle\mathbf e_1:=\frac{\mathbf b_1}{\|\mathbf b_1\|}\\\mathbf b_2:=\mathbf u_2-\mbox{proj}_{\mathbf b_1}(\mathbf u_2),&\mathbf e_2:=\displaystyle\frac{\mathbf b_2}{\|\mathbf b_2\|}\\\vdots&\vdots\\\displaystyle\mathbf b_k:=\mathbf u_k-\sum_{i=1}^{k-1}\mbox{proj}_{\mathbf b_i}(\mathbf u_k),&\displaystyle\mathbf e_k:=\frac{\mathbf b_k}{\|\mathbf b_k\|}\\\vdots&\vdots\end{array}</math>}}
* מרחב הפולינומים ממעלה <math>n</math> או פחות מסומן <math>P_n[x]</math>.
* '''פולינומי לז׳נדר:''' בהנתן המכפלה הפנימית <math>\langle f,g\rangle=\int\limits_{-1}^1 f(x)g(x)\mathrm dx</math> על מרחב הפולינומים <math>P_n[x]</math>, הפולינומים האורתוגונליים הנוצרים בתהליך גרם־שמידט מהבסיס <math>\{1,x,x^2,\dots,x^n\}</math> הם {{left|<math>\begin{array}{l}P_0(x)=1\\P_1(x)=x\\\displaystyle P_2(x)=\frac{3x^2-1}2\\\displaystyle P_3(x)=\frac{5x^3-3x}2\\\vdots\end{array}</math>}}ניתן לחשב אותם גם ע״י <math>P_n(x)=\frac1{2^n\cdot n!}\frac{\mathrm d^n}{\mathrm dx^n}\left(x^2-1\right)^n</math> או <math>P_{n+1}(x)=\frac{(2n+1)x\cdot P_n(x)-n\cdot P_{n-1}(x)}{n+1}</math>, והם מקיימים <math>\|P_n\|^2=\frac2{2n+1}</math>.
* '''פולינומי צבישב:''' בהנתן המכפלה הפנימית <math>\langle f,g\rangle=\int\limits_{-1}^1\frac{f(x)g(x)}\sqrt{1-x^2}\mathrm dx</math> על מרחב הפולינומים <math>P_n[x]</math>, הפולינומים האורתוגונליים הנוצרים בתהליך גרם־שמידט מהבסיס <math>\{1,x,x^2,\dots,x^n\}</math> הם {{left|<math>\begin{array}{l}T_0(x)=1\\T_1(x)=x\\T_2(x)=2x^2-1\\T_3(x)=4x^3-3x\\\vdots\end{array}</math>}}ניתן לחשב אותם גם ע״י <math>T_n(x)=\frac{\sqrt{1-x^2}}{(-1)^n(2n-1)!!}\frac{\mathrm d^n}{\mathrm dx^n}\left(1-x^2\right)^{n-\frac12}</math> או <math>T_{n+1}(x)=2x\cdot T_n(x)-T_{n-1}(x)</math>, והם מקיימים <math>\|T_n\|^2=\begin{cases}\pi,&n=0\\\frac\pi2,&\text{else}\end{cases}</math>.