שינויים

קפיצה אל: ניווט, חיפוש

אנליזת פורייה - ארז שיינר

נוספו 958 בתים, 08:07, 4 במרץ 2019
/* דוגמא */
:<math>\frac{\pi}{2}=\sum_{n=1}^\infty\frac{2}{2n-1}\sin(n\pi-\frac{\pi}{2}) =\sum_{n=1}^\infty\frac{-2}{2n-1}\cos(n\pi) = \sum_{n=1}^\infty\frac{2(-1)^{n+1}}{2n-1} </math>
*שימו לב שהפעם לא קיבלנו טור חדש בזכות פורייה, כיוון שנקבל בדיוק את אותו הטור אם נציב 1 בטור הטיילור של <math>arctan(x)</math>.
 
 
*כעת, תהי <math>g</math> ההמשך המחזורי של <math>x^2</math>.
*הפונקציה g הינה רציפה בכל הממשיים.
*הפונקציה g גזירה בכל הממשיים פרט לנקודות <math>x=\pi+2\pi k</math>.
*בנקודות אי הגזירות, הנגזרות החד צדדיות קיימות ושוות ל<math>\pm 2\pi</math> (כיוון שהנגזרת של <math>x^2</math> היא <math>2x</math>).
*סה"כ לפי משפט דיריכלה, טור הפוריה של g מתכנס אליה בכל הממשיים (כיוון שהיא רציפה בכל הממשיים).
 
 
*כלומר קיבלנו שלכל <math>x\in [-\pi,\pi]</math> מתקיים כי:
::<math>x^2=\frac{\pi^2}{3} + \sum_{n=1}^\infty \frac{4(-1)^n}{n^2}cos(nx)</math>
 
 
*שימו לב שאם נגזור איבר איבר את טור הפוריה של <math>x^2</math>, נקבל את טור הפורייה של <math>2x</math>.
*האם זה מפתיע?