שינויים

אנליזת פורייה - ארז שיינר

נוספו 932 בתים, 11:14, 11 במרץ 2019
/* שיוויון פרסבל */
===שיוויון פרסבל===
*נביט במערכת האורתונורמלית <math>\{\frac{1}{\sqrt{2}},\cos(x),\sin(x),\cos(2x),\sin(2x),...\}\subseteq E</math>, ותהי <math>f\in E</math>.
*ידוע לנו כי <math>a_0=\langle f,1\rangle</math>, ולכן <math>\frac{a_0}{\sqrt{2}}=\langle f,\frac{1}{\sqrt{2}}\rangle</math>
*תהי נסמן את סדרת הסכומים החלקיים של טור הפורייה המתאים לפונקציה f ב <math>S_n</math>. *<math>S_n</math> היא ההיטל של <math>f</math> על הקבוצה האורתונורמלית <math>\{\frac{1}{\sqrt{2}},\cos(x),\sin(x),\cos(2x),\sin(2x),...,\cos(nx),\sin(nx)\in E}</math>  *נזכור כי <math>||v||^2=||v-\widetilde{v}||^2+||\widetilde{v}||^2</math>**לכן <math>||f-S_n||^2=||f||^2-||S_n||^2</math>, מתוך מה שלמדנו על היטלים. לפי *כמו כן, נזכור כי <math>||\widetilde{v}||^2 = \sum_{i=1}^{n}|\langle v,e_i\rangle|^2</math>**לכן <math>||S_n||^2 = \frac{|a_0|^2}{2}+\sum_{k=1}^n |a_k|^2+|b_k|^2</math>  *אי שיוויון בסל ידוע לנו אומר כי<math>\sum_{i=1}^\infty |\langle v,e_i\rangle|^2 \leq ||v||^2</math>*כלומר:
:<math>\frac{|a_0|^2}{2}+\sum_{n=1}^\infty |a_n|^2+|b_n|^2 \leq ||f||^2 = \langle f,f\rangle = \frac{1}{\pi}\int_{-\pi}^{\pi} |f(x)|^2dx</math>
*משפט שיוויון פרסבל אומר שבעצם מתקייםשיוויון:
:<math>\frac{1}{\pi}\int_{-\pi}^{\pi} |f(x)|^2dx=\frac{|a_0|^2}{2}+\sum_{n=1}^\infty |a_n|^2+|b_n|^2 </math>
 
 
 
*אם נוכיח ש <math>||f-S_n||^2\to 0</math>, נסיק כי <math>||S_n||^2\to ||f||^2</math> וזהו בדיוק שיוויון פרסבל.
====הוכחת שיוויון פרסבל כאשר טור הפורייה מתכנס במ"ש====
 
*תהי <math>f</math> רציפה בקטע <math>[-\pi,\pi]</math> המקיימת <math>f(-\pi)=f(\pi)</math>, כך שהנגזרת שלה <math>f'</math> רציפה למקוטעין.