שינויים

קפיצה אל: ניווט, חיפוש

אנליזת פורייה - ארז שיינר

נוספו 1,136 בתים, 09:38, 2 במאי 2019
/* תכונות ההתמרה */
**לכן סה"כ קיבלנו כי <math>\mathcal{F}[f'](s)=is\mathcal{F}[f](s)</math>
 
*נגזרת ההתמרה:
*תהי <math>f\in G</math> רציפה כך ש<math>xf(x)\in G</math> אזי:
*<math>\mathcal{F}[xf(x)](s)=i\frac{d}{ds}\mathcal{F}[f](s)</math>
**הוכחה:
**<math>i\frac{d}{ds}\mathcal{F}[f](s) = i \frac{d}{ds} \frac{1}{2\pi}\int_{-\infty}^{\infty} f(x)e^{-isx}dx = \frac{i}{2\pi}\int_{-\infty}^{\infty} f(x)\frac{d}{ds}e^{-isx}dx = \frac{-i^2}{2\pi}\int_{-\infty}^{\infty} xf(x)e^{-isx} = \mathcal{F}[xf(x)](s)</math>
**אנחנו צריכים להצדיק את ההכנסה של הנגזרת אל תוך האינטגרל:
***נסמן <math>F_n(s)=\frac{1}{2\pi}\int_{-n}^{n} f(x)e^{-isx}dx</math>
***ברור ש<math>F_n(s)\to F(s)</math>, נוכיח שסדרת הנגזרות מתכנסת במ"ש ולכן מתכנסת לנגזרת של <math>F(s)</math>.
***עבור אינטגרל סופי מותר להחליף את סדר הנגזרת והאינטגרל בזכות פוביני.
***אכן <math>F_n'(s)</math> מתכנסות במ"ש כיוון שהאינטגרל <math>\int_{-\infty}^\infty |xf(x)|dx</math> מתכנס, והרי <math>|xf(x)e^{-isx}|=|xf(x)|</math> ואכן אינו תלוי בs.
====דוגמאות====