שינויים

קפיצה אל: ניווט, חיפוש

אנליזת פורייה - ארז שיינר

נוספו 1,471 בתים, 08:15, 16 במאי 2022
/* תקציר ההרצאות */
[[קטגוריה:מערכי לימוד]]
=מבחנים לדוגמא=
*[[מדיה:20ForierTestA.pdf|מועד א' תש"ף]]
**[[מדיה:20ForierTestASol.pdf|פתרונות סופיים למועד א' תש"ף]]
*[[מדיה:20ForierTestB.pdf|מועד ב' תש"ף]]
*[[מדיה:19ForierExmplTest.pdf|מבחן לדוגמא תשע"ט]]
**[[מדיה:19ForierExmplTestSol.pdf|פתרון מבחן לדוגמא תשע"ט]]
*[[מדיה:19ForierTestA.pdf|מועד א' תשע"ט]]
**[[מדיה:19ForierTestASol.pdf|פתרון חלקי מאד מועד א' תשע"ט]]
*[[מדיה:19ForierTestB.pdf|מועד ב' תשע"ט]]
**[[מדיה:19ForierTestBSol.pdf|פתרון מועד ב' תשע"ט]]
=תקציר ההרצאות=
*ההרצאות מבוססות בחלקן על הספר המצויין [httphttps://www2.mathsamyzaf.com/technion.ac.il/~yoramyfourier/heb-psfourier.html pdf 'טורי פוריה' של זעפרני ופינקוס]. עוד ספרים מתמטיים בסגנון ניתן למצוא [https://samyzaf.com/ באתר של סמי זערפני]. 
==הרצאה 1 - הקדמה ומקדמי פוריה==
===הקדמה - גלים===
**<math>\frac{1}{\pi}\int_{-\pi}^{\pi}\cos(0)\cos(0)dx=\frac{1}{\pi}\int_{-\pi}^{\pi}1dx=2</math>
*שימו לב שכאשר מציבים 0 בsin מקבלים אפס, ולכן אין צורך בבדיקה הזו.
*כמו כן קל לחשב <math>\int_{-\pi}^{\pi} \sin(x)dx = \int_{-\pi}^{\pi} \cos(x)dx=0</math>
**נגדיר את שתי הפונקציות <math>h_s(t)=\begin{cases}g(t)\sin(\frac{t}{2}) & 0\leq t\leq \pi \\ 0 & -\pi\leq t <0\end{cases}</math> ו <math>h_c(t)=\begin{cases}g(t)\cos(\frac{t}{2}) & 0\leq t\leq \pi \\ 0 & -\pi\leq t <0\end{cases}</math>
**קל לראות כי שתי הפונקציות רציפות למקוטעין. לכן פרט לשינוי במספר סופי של נקודות שלא משפיע על האינטגרל, ניתן להניח כי <math>h_c,h_s\in E</math>.
**ביחד נקבל כי <math>\int_{0}^\pi g(t)\sin\left(\left(n+\frac{1}{2}\right)t\right)dt = \int_{-\pi}^\pi h_c(t)\sin(nt)dt + \int_{-\pi}^\pi h_s(t)sin\cos(nt)dt \to 0</math>
===גרעין דיריכלה===
*כעת נחשב את המקדמים של הסינוסים:
:<math>b_n=\langle f,sin(nx)\rangle = \frac{1}{\pi}\int_{-\pi}^\pi x\sin(nx)dx =\frac{2}{\pi}\int_{0}^\pi x\sin(nx)dx= \frac{2}{n\pi}\left[-x\cos(nx)\right]_{0}^\pi + \frac{2}{n\pi}\int_{0}^{\pi}\cos(nx)dx =
-\frac{2\pi\cos(\pi n)}{\pi n} = \frac{2(-1)^{n+1}}{n}</math>
*לכן, בכל נקודת רציפות של f, כלומר בכל נקודה <math>x\neq \pi +2\pi k</math>, מתקיים כי:
:<math>\frac{\pi}{2}=\sum_{n=1}^\infty\frac{2}{2n-1}\sin(n\pi-\frac{\pi}{2}) =\sum_{n=1}^\infty\frac{-2}{2n-1}\cos(n\pi) = \sum_{n=1}^\infty\frac{2(-1)^{n+1}}{2n-1} </math>
*שימו לב שהפעם לא קיבלנו טור חדש בזכות פורייה, כיוון שנקבל בדיוק את אותו הטור אם נציב 1 בטור הטיילור של <math>arctan(x)</math>.
 
=====דוגמא 2=====
*כלומר, בתנאים הנתונים, אם טור הפוריה של f הינו:
:<math>f(x)=\sim\frac{a_0}{2}+\sum_{n=1}^\infty a_n\cos(nx)+b_n\sin(nx)</math>
*אזי טור הפורייה של הנגזרת הינו:
:<math>f'(x)=\sim\frac{\alpha_0}{2}+\sum_{n=1}^\infty \left((-1)^n\alpha_0+nb_n\right)\cos(nx)-n\cdot a_n\sin(nx)</math>
*במקרה המיוחד בו <math>f(-\pi)=f(\pi)</math> מתקיים כי <math>\alpha_0=0</math> ולכן נקבל את טור הפורייה הפשוט:
:<math>f'(x)=\sim\sum_{n=1}^\infty nb_n\cos(nx)-na_n\sin(nx)</math> 
====דוגמאות====
*נחלץ את המקדמים ונקבל כי טור הפורייה של <math>\frac{x^3}{3}</math> הוא:
:<math>\frac{x^3}{3} = \sim \sum_{n=1}^\infty \frac{2(-1)^n}{n^3}\left(2-\frac{\pi^2 n^2}{3}\right)\sin(nx)</math> 
=====דוגמא 2=====
:<math>F(s)=\frac{1}{2\pi}\int_{-\infty}^\infty f(x)e^{-isx}dx = \frac{1}{2\pi}\int_{-\pi}^\pi |x|e^{-isx}dx = </math>
:<math>\frac{1}{2\pi}\int_{-\pi}^\pi |x|\cos(sx)dx - \frac{i}{2\pi}\int_{-\pi}^\pi |x|\sin(sx)dx = \frac{1}{\pi}\int_{0}^\pi x\cos(sx)dx = \frac{\sin(s\pi)}{s} + \frac{\cos(s\pi)-1}{s^2\pi}</math>
 
 
*שימו לב: חישוב האינטגרל שגוי עבור <math>s=0</math>, ניתן להציבו בנוסחא המקורית של האינטגרל או להשתמש ברציפות ההתמרה, שנלמד בהמשך.
==הרצאה 7 - תכונות של התמרות פורייה==
*התמרת הנגזרת:
*נניח <math>f,f'\in G</math> ונניח כי <math>f'</math> רציפה ומתקיים כי <math>\lim_{x\to \pm\infty}f(x)=0</math>, אזי:
*<math>\mathcal{F}[f'](s)=is\mathcal{F}[f](s)</math>
**הוכחה:
*כיוון ש<math>e^{-x^2}</math> רציפה וגזירה, וכיוון ש <math>e^{-\frac{s^2}{4}}\in G</math> לפי משפט ההתמרה ההפוכה נקבל כי:
**<math>\mathcal{F}^{-1}[Ce^{-\frac{s^2}{4}}](x) = e^{-x^2}</math>
*כלומר <math>e^{-x^2}=\int_{-\infty}^\infty Ce^{-\frac{s^2}{4}}e^{-isx}ds </math>
*נציב <math>t=\frac{s}{2}</math> ונקבל:
**<math>e^{-x^2} = 2C\int_{-\infty}^\infty e^{-t^2}e^{-i(-2x)t}dt = 2C\cdot 2\pi Ce^{-\frac{(-2x)^2}{4}}</math>
*נזכור בנוסף שראינו כי <math>2\pi C = \int_{-\infty}^\infty e^{-x^2}dx</math>.
*לכן נובע כי <math>\int_{-\infty}^\infty e^{-x^2}dx = \sqrt{\pi}</math>
 
===דוגמא===
*נביט ב<math>f(x)=\begin{cases}1 & |x|<1 \\ 0 & |x|>1\end{cases}</math>
*<math>\mathcal{F}[f](s) = \frac{sin(s)}{\pi s}</math>
*<math>\lim \int_{-(n+\frac{1}{2})}^{n+\frac{1}{2}} \frac{sin(s)}{\pi s}e^{is}ds = \frac{1}{2}</math> (הצבנו x=1, הנקודה בה f אינה רציפה).
 
===הקדמה לקראת הוכחת משפט ההתמרה ההפוכה===
**<math>\int_{-(n+\frac{1}{2})}^{n+\frac{1}{2}}\int_{-\infty}^\infty f(y)e^{is(x-y)}dyds = \lim_{k\to\infty} \int_{-k}^k \int_{-(n+\frac{1}{2})}^{n+\frac{1}{2}}f(y)e^{is(x-y)}dsdy = \int_{-\infty}^\infty \int_{-(n+\frac{1}{2})}^{n+\frac{1}{2}}f(y)e^{is(x-y)}dsdy</math>
**שימו לב שהאינטגרל הלא אמיתי אכן מתכנס (כפי שהוכחנו לעיל) ולכן שווה לגבול.
 
==הרצאה 9 - קונבולוציה, משוואת החום על מוט אינסופי==
:<math>\langle v_n,v_n\rangle = v_n^t \overline{v_n} = \sum_{k=0}^{N-1} e^{2\pi i n \frac{k}{N}}\cdot e^{-2\pi i n \frac{k}{N}}= 1+1+...+1= N</math>
*עבור <math>n\neq m</math>:
:<math>\langle v_n,v_m\rangle = \sum_{k=0}^{N-1} e^{2\pi i n \frac{k}{N}}\cdot e^{-2\pi i m \frac{k}{N}} = \sum_{nk=0}^{N-1} e^{2\pi i (n-m) \frac{k}{N}}</math>
*אבל זה בדיוק סכום סדרה הנדסית <math>1+q+...+q^{N-1}</math> עבור <math>q=e^{2\pi i (n-m)\frac{1}{N}}</math>
*שימו לב ש<math>\frac{|n-m|}{N}<1</math> ולכן <math>q\neq 1</math>.
*(השיוויון נכון בזכות המחזוריות)
*ולכן נקבל:
:<math>v_n v_{N-n} = (1, e^{2\pi i (\frac{(N-n)}{N} - 1)},...,e^{2\pi i (N-1)(\frac{(N-n)}{N} - 1)}) = v_{-n}</math>