שינויים

קפיצה אל: ניווט, חיפוש

אנליזת פורייה - ארז שיינר

נוספו 2,047 בתים, 05:12, 15 במאי 2019
/* הרצאה 7 - המשך התמרות פורייה */
:<math>\frac{1}{2\pi}\int_{-\pi}^\pi |x|\cos(sx)dx - \frac{i}{2\pi}\int_{-\pi}^\pi |x|\sin(sx)dx = \frac{1}{\pi}\int_{0}^\pi x\cos(sx)dx = \frac{\sin(s\pi)}{s} + \frac{\cos(s\pi)-1}{s^2\pi}</math>
==הרצאה 7 - המשך תכונות של התמרות פורייה==
===תכונות ההתמרה===
*תהי <math>f\in G</math> אזי <math>F(s)=\mathcal{F}[f](s)</math> רציפה במ"ש ב<math>\mathbb{R}</math>.
**נציב <math>s=0</math>
**<math>2\pi S=F(0)=\int_{-\infty}^\infty e^{-x^2}dx </math>, נחשב אינטגרל מפורסם זה בהמשך.
 
 
==הרצאה 8 - התמרה הפוכה==
 
*בטורי פורייה, מקדמי הפורייה היו האמפליטודות של התדרים, וכאשר סכמנו את הגלים קיבלנו חזרה את הפונקציה לפי משפט דיריכלה.
*כעת התדרים שלנו הם כל הממשיים, ולכן הסכימה שלהם היא בעצם אינטגרל.
*האמפליטודה של כל תדר מרוכב <math>e^{isx}</math> היא התמרת הפורייה <math>F(s)</math>, ולכן אנחנו מצפים לקבל:
**<math>f(x)=\int_{-\infty}^\infty F(s)e^{isx}ds</math>
 
 
*משפט ההתמרה ההפוכה:
**תהי <math>f\in G</math>, אזי בכל נקודה בה קיימות הנגזרות החד צדדיות מתקיים כי:
**<math>\frac{f(x^+)+f(x^-)}{2}=\lim_{n\to\infty}\int_{-n}^{n}\mathcal{F}[f](s)e^{isx}ds</math>
**שימו לב שהאינטגרל <math>\int_{-\infty}^{\infty}\mathcal{F}[f](s)e^{isx}ds</math> לא חייב להתכנס, אבל אם הוא מתכנס הוא שווה לגבול לעיל.
 
 
===הקדמה לקראת הוכחת משפט ההתמרה ההפוכה===
 
*כעת נוכיח מספר טענות הדרושות לנו לצורך הוכחת משפט ההתמרה ההפוכה.
 
 
====למת רימן-לבג====
*ראינו גרסא של למת רימן-לבג עבור טורי פוריה, לפי מקדמי הפורייה שואפים לאפס.
*כעת ננסח ונוכיח גרסא עבור התמרות פורייה:
 
 
*תהי <math>f\in G</math>, אזי <math>\lim_{s\to\pm\infty}\mathcal{F}[f](s)=0</math>
*(כלומר, האמפליטודות שואפות לאפס כאשר התדר שואף לאינסוף)
 
 
*הוכחה:
**צ"ל כי<math>\lim_{s\to\pm\infty}\frac{1}{2\pi}\int_{-\infty}^\infty f(x)e^{-isx}dx =0</math>
**נשים לב כי <math>e^{-isx}=\cos(sx)-i\sin(sx)</math>.
**לכן מספיק לנו להוכיח כי <math>\lim_{s\to\pm\infty}\frac{1}{2\pi}\int_{-\infty}^\infty f(x)cos(sx)dx =0</math> (ההוכחה עבור סינוס דומה).