שינויים

קפיצה אל: ניווט, חיפוש

אנליזת פורייה - ארז שיינר

נוספו 1,987 בתים, 05:39, 15 במאי 2019
/* למת רימן-לבג */
*הוכחהנוכיח את הלמה:* *צ"ל כי<math>\lim_{s\to\pm\infty}\frac{1}{2\pi}\int_{-\infty}^\infty f(x)e^{-isx}dx =0</math>**נשים לב כי <math>e^{-isx}=\cos(sx)-i\sin(sx)</math>.**לכן מספיק לנו להוכיח כי <math>\lim_{s\to\pm\infty}\frac{1}{2\pi}\int_{-\infty}^\infty f(x)\cos(sx)dx =0</math> (ההוכחה עבור סינוס דומה).*כיוון ש<math>f\in G</math> האינטגרל <math>\int_{-\infty}^{\infty}|f(x)|dx</math> מתכנס. *לכן קיים <math>M</math> עבורו <math>\int_{|x|>M}|f(x)|dx<\frac{\varepsilon}{2}</math>.*לכן <math>|\int_{|x|>M}f(x)\cos(sx)dx|\leq \int_{|x|>M}|f(x)|dx < \frac{\varepsilon}{2}</math>*לכן מספיק לנו להוכיח כי עבור <math>|s|</math> מספיק גדול מתקיים <math>|\int_{-M}^{M}f(x)\cos(sx)dx| < \frac{\varepsilon}{2}</math>*(עבור <math>M=\pi</math> ו<math>s\in\mathbb{N}</math> כבר הוכחנו טענה זו בעזרת פרסבל, כעת נשתמש בשיטות אחרות.)  *נשים לב כי בכל קטע מתקיים:**<math>\lim_{s\to\pm\infty}\int_{x_1}^{x_2}\cos(sx)dx = \lim_{s\to\pm\infty}\frac{\sin(sx_2)-\sin(sx_1)}{s}=0</math>*כיוון ש<math>f</math> רציפה למקוטעין היא אינטגרבילית ב<math>[-M,M]</math>.*לכן ניתן לבחור פונקצית מדרגות <math>h</math> עבורה מתקיים <math>\int_{-M}^M |f-h|dx < \frac{\varepsilon}{4}</math> (האינטגרל על פונקצית המדרגות הינו סכום דרבו תחתון מספיק קרוב).*כמו כן מתקיים:**<math>\int_{-M}^Mh\cos(sx)dx = \sum \int_{x_{i-1}}^{x_i}m_i\cos(sx)dx</math>**כיוון שמדובר בסכום סופי של ביטויים ששואפים לאפס, הסכום גם שואף לאפס.*סה"כ <math>\int_{-M}^{M}f(x)\cos(sx)dx = \int_{-M}^{M}(f(x)-h(x))\cos(sx)dx + \int_{-M}^{M}h(x)\cos(sx)dx</math>**מתקיים כי <math>|\int_{-M}^{M}(f(x)-h(x))\cos(sx)dx|\leq \int_{-M}^{M}|f(x)-h(x)|dx < \frac{\varepsilon}{4}</math>**עבור <math>|s|</math> מספיק גדול מתקיים כי <math>|\int_{-M}^{M}h(x)\cos(sx)dx|< \frac{\varepsilon}{4}</math>  *סה"כ קיבלנו כי עבור <math>|s|</math> מספיק גדול מתקיים <math>|\int_{-\infty}^{\infty}f(x)\cos(sx)sx|<\varepsilon</math>  ====אינטגרל עזר====