שינויים

קפיצה אל: ניווט, חיפוש

הלמה של צורן

נוספו 6,100 בתים, 17:26, 17 במאי 2015
'''דוגמאות:''' אם <math> x_1< x_2 < \cdots</math> אז <math>\{x_1,x_2,\dots\}</math> היא שרשרת, שבה לכל איבר יש עוקב ישיר. אבל זהו בשום אופן אינו המקרה הכללי: המספרים הרציונליים מהווים שרשרת שבה אין לאף איבר עוקב ישיר. המספרים הממשיים הם שרשרת שאינה בת מניה.
'''הלמה של צורן'''. תהי X קבוצה לא ריקה, עם התכונה שלכל שרשרת (לא ריקה) ב-X יש חסם מלעיל. אז יש ב-X איבר מקסימלי.
'''הערות'''
מבחינה אינטואיטיבית, אפשר לבצע את אותו תהליך גם במקרה ש X קבוצה אינסופית. כאן, מופיע מרכיב נוסף: לאחר שבחרנו איברים <math>x_1<x_2<x_3<\cdots</math>, ייתכן שאף אחד מהם אינו מקסימלי. זה המקום שעלינו להשתמש בתנאי של הלמה של צורן, האומר שלכל שרשרת, ובפרט לשרשרת הזו, יש חסם מלעיל. נקרא לו, למשל, <math>x_\omega</math>. כעת אפשר להמשיך את התהליך של בחירת איברים יותר ויותר גדולים, ואם לא ניעצר, נקבל שוב שרשרת, ושוב יהיה לה חסם מלעיל, ושוב אפשר להמשיך. בכל צעד, מוסיפים לשרשרת איבר חדש של X. לכן, התהליך חייב להיעצר מתישהו לפני שהקבוצה X "נגמרת". כיון שהקבוצה אינסופית, לא ברורה המשמעות של הטיעון הזה כל עוד לא מפתחים מנגנון עבור בניה באינדוקציה מעבר למקרה הבן מניה. כיון שאין כאן המקום להאריך בזה, ניתן במקום זאת הוכחה בצורה אחרת.
 
=== הוכחת הלמה של צורן מאקסיומת הבחירה ===
 
((הוכחה))
=== הלמה של צורן עבור משפחה של קבוצות ===
'''הלמה של צורן עבור משפחה של קבוצות'''. תהי X משפחה לא ריקה של קבוצות, הסגורה לאיחוד של שרשראות. אז יש ל-X איבר מקסימלי.
 
 
== הוכחת הלמה של צורן מאקסיומת הבחירה ==
 
בסעיף זה נוכיח את הלמה של צורן. למעשה נוכיח טענה חזקה יותר.
 
=== קבוצות סדורות היטב ===
 
קבוצה סדורה A היא '''סדורה היטב''', אם לכל תת-קבוצה לא ריקה שלה יש מינימום (היינו איבר שהוא קטן או שווה לכל איבר אחר; לא די בקיומו של איבר מינימלי).
 
'''הערה'''. כל קבוצה סדורה היטב היא שרשרת. אכן, יהיו a,b אברים בקבוצה, אז לקבוצה הלא-ריקה <math>\ \{a,b\}</math> יש מינימום, שהוא איבר הקטן מן האיבר השני; לכן כל שני אברים ניתנים להשוואה.
 
תת-קבוצה H של קבוצה סדורה A נקראת '''רישא''', אם היא "סגורה כלפי מטה", כלומר לכל <math>\ a \in A</math> ולכל <math>\ h \in H</math>, אם <math>\ a < h</math> אז <math>\ a \in H</math>.
 
'''טענה'''. כל רישא של קבוצה סדורה היטב גם היא סדורה היטב.
 
לכל <math>\ a\in A</math> מסמנים <math>\ A_{<a} = \{x \in A\, | \, x < a\}</math>; זוהי תמיד רישא של A.
 
'''טענה'''. לכל רישא אמיתית H של קבוצה סדורה היטב A קיים <math>\ a \in A</math> כך ש-<math>\ H = A_{<a}</math>. '''הוכחה'''. קח a להיות המינימום של הקבוצה <math>\ \{x \in A | x > H\}</math>.
 
=== הגרסה החזקה של הלמה של צורן ===
 
'''הלמה של צורן''' (גרסה חזקה). תהי X קבוצה לא ריקה, עם התכונה שלכל תת-קבוצה סדורה היטב (ולא ריקה) ב-X יש חסם מלעיל. אז יש ב-X איבר מקסימלי.
 
גרסה זו נבדלת מן הקודמת בכך שכעת אנו מניחים שיש חסם מלעיל רק לשרשראות שהן סדורות היטב, ולא לכל השרשראות.
 
שאר הסעיף מוקדש ל'''הוכחת הלמה''' (על-פי Pierre-Yves Gaillard). ההוכחה בדרך השלילה. נניח שאין ל-X איבר מקסימלי.
 
לפי ההנחה, כל תת-קבוצה סדורה היטב W של X חסומה מלעיל. הנחת השלילה, הקובעת שאין איבר מקסימלי, אומרת יותר מזה: קיים איבר <math>\ p(W) \in X</math> הגדול ממש מ-W, כלומר <math>\ p(W)>w</math> לכל <math>\ w\in W</math>. נתבונן בתת-קבוצה סדורה היטב W. לכל <math>\ w \in W</math>, האיבר w הוא חסם מלעיל של הרישא <math>\ W_{<w}</math>, ולכן ''יתכן'' ש-<math>\ p(W_{<w})=w</math>; יתכן, כמובן, שלא. נאמר שתת-קבוצה סדורה היטב W היא '''מדוייקת''' אם לכל <math>\ w\in W</math> מתקיים <math>\ p(W_{<w}) = w</math>.
 
נסמן ב-<math>\ \Omega</math> את קבוצת תת-הקבוצות המדוייקות של X. תהי U האיחוד של כל הקבוצות השייכות ל-<math>\ \Omega</math>.
 
'''טענה 1'''. לכל <math>\ W,W' \in \Omega</math>, אחת מהן היא רישא של השניה. אכן, תהי Q האיחוד של כל הרישות המשותפות ל-<math>\ W,W'</math>. אם נניח ש-<math>\ Q \neq W,W'</math>, אז יש <math>\ a\in W, a'\in W'</math> כך ש- <math>\ Q = W_{<a} = W'_{<a'}</math>, אבל אז <math>\ a = p(Q) = a'</math> מכיוון ש-<math>\ W,W'</math> מדוייקות, ויוצא ש-<math>\ Q \cup \{p(Q)\}</math> גם היא רישא משותפת ל-<math>\ W,W'</math>, בסתירה להגדרה של Q. מכאן ש- <math>\ Q = W</math> או <math>\ Q = W'</math>, וזה מוכיח את טענה 1.
 
'''מסקנה 2'''. <math>\ \Omega</math> סדורה לינארית. אכן, מכל שני אברים של <math>\ \Omega</math>, אחד הוא רישא של השני, ולכן מוכל בו.
 
'''מסקנה 3'''. <math>\ U</math> היא שרשרת. אכן, לכל <math>\ a,a' \in U</math> יש <math>\ W,W' \in \Omega</math> כך ש-<math>\ a\in W, a' \in W'</math>; ולפי מסקנה 2 אפשר להניח <math>\ W \subseteq W'</math> (או להיפך) ואז <math>\ a,a' \in W'</math>, והרי <math>\ W'</math> שרשרת.
 
'''טענה 4'''. כל <math>\ W \in\Omega</math> הוא רישא של U. אכן, <math>\ W \subseteq U</math> לפי ההגדרה של U כאיחוד הקבוצות השייכות ל-<math>\ \Omega</math>, ולפי טענה 1, W היא רישא של U.
 
'''טענה 5'''. U סדורה היטב. תהי A תת-קבוצה לא ריקה של U, אז יש <math>\ W \in \Omega</math> החותכת את A באופן לא ריק, ומכיוון ש-W סדורה היטב, יש לחיתוך <math>\ A \cap W\neq \emptyset</math> איבר מינימלי, m. נראה ש-m הוא המינימום של A כולה. יהי <math>\ a \in A</math>. לפי מסקנה 3, a בר-השוואה עם m. אם <math>\ a < m</math> נקבל מטענה 4 ש-<math>\ a \in W</math> בסתירה למינימליות של m. לכן <math>\ m \leq a</math>, כפי שרצינו.
 
'''טענה 6'''. <math>\ U \in \Omega</math>. עלינו להראות ש-U מדוייקת, ולאור טענה 5, די להראות שלכל <math>\ u \in U</math> מתקיים <math>\ p(U_{<u}) = u</math>. אבל לפי הגדרת U, יש <math>\ W \in \Omega</math> כך ש-<math>\ u \in W</math>, ואז <math>\ U_{<u} \subset W</math> והטענה נובעת מכך ש-W מדוייקת.
 
מכיוון ש-U סדורה היטב, יש איבר <math>\ p(U) \in X</math>. כצעד אחרון בהוכחה, נראה שגם <math>\ \bar{U} = U\cup\{p(U)\} \in \Omega</math>. ברור ש-<math>\ \bar{U}</math> היא שרשרת. אם <math>\ u \in \bar{U}</math>, יש שתי אפשרויות: אם <math>\ u = p(U)</math> אז <math>\ \bar{U}_{<u} = U</math> וממילא <math>\ p(U) = u</math>; ואחרת <math>\ p(\bar{U}_{<u}) = p(U_{<u}) = u</math> לפי טענה 6. אבל מהגדרת U נובע עכשיו ש-<math>\ \bar{U} \subseteq U</math>, וזו כמובן סתירה (משום ש-<math>\ U < p(U)</math>).
== שימושים ==
19
עריכות