שינויים

קפיצה אל: ניווט, חיפוש

הלמה של צורן

הוסרו 292 בתים, 12:13, 13 באוגוסט 2020
/* הגרסה החזקה של הלמה של צורן */
# הטענה כמובן אינה נכונה אם <math>X</math> ריקה. זו אינה נקודה שולית: הלמה של צורן מספקת הוכחת קיום, וכדי להפעיל אותה יש לוודא שקיים איזשהו איבר בקבוצה <math>X</math>; רק אחר-כך מספקת הלמה איבר מקסימלי בקבוצה.
# הכיוון ההפוך ללמה הוא טריוויאלי: איבר מקסימלי של <math>X</math> הוא חסם מלעיל לכל תת-קבוצה.
# אם <math>X</math> קבוצה סדורה לינארית, טענת הלמה נכונה באופן טריוויאלי (משום ש-<math>X</math> עצמה היא שרשרת, ולפי ההנחה יש לה חסם מלעיל, שהוא איבר מקסימלי). הלמה נועדה, איפוא, לטפל במקרים שבהם הסדר של <math>X</math> אינו לינארי.
# במקרה שהקבוצה הסדורה <math>X</math> סופית, אין צורך בלמה: ניקח איבר כלשהו של <math>X</math>. אם הוא מקסימלי, סיימנו. אחרת, ניקח איבר שגדול ממנו. אם האיבר החדש מקסימלי, סיימנו. אחרת, ניקח איבר שגדול ממנו, וכו'. כל עוד איננו נעצרים באיבר מקסימלי, אנו מקבלים איברים חדשים של <math>X</math>. כיון שהקבוצה <math>X</math> סופית, התהליך חייב להפסק לאחר מספר סופי של צעדים, כלומר ניעצר באיבר מקסימלי.
'''הלמה של צורן עבור משפחה של קבוצות:''' תהי <math>X</math> משפחה לא ריקה של קבוצות, הסגורה לאיחוד של שרשראות. אז יש ב-<math>X</math> איבר מקסימלי.
== הוכחת הלמה של צורן ==תובא בהמשך. ראשית, נראה דוגמאות ליישומיה החשובים.
בסעיף זה נוכיח את הלמה של צורן. למעשה נוכיח טענה חזקה יותר. == שימושים ==
=== קבוצות סדורות היטב ===ללמה של צורן שימושים רבים בכל תחומי המתמטיקה. נדגים כמה מהם. הקורא מוזמן להתמקד באלו העוסקות בתחומים המוכרים לו, ויכול לדלג ללא חשש.
אומרים שקבוצה סדורה <math>A</math> היא '''סדורה היטב''' אם בכל תת-קבוצה לא ריקה שלה יש איבר ראשון (איבר שהוא קטן או שווה לכל איבר אחר בתת-הקבוצה; לא די בקיומו של איבר מינימלי).=== יחס הסדר בין עוצמות הוא לינארי ===
'''הערותמשפט'''# כל קבוצה סדורה היטב היא שרשרת. אכן, יהיו לכל שתי קבוצות <math>aA,bB</math> אברים בקבוצה, אז בקבוצה הלא-ריקה מתקיים<math>\{a,b|A| \}leq |B|</math> או <math>\ |B| \leq |A|</math> יש איבר ראשון, שהוא איבר הקטן מן האיבר השני. לכן כל שני אברים ניתנים להשוואה.
# הוכחה: תהי <math>X</math> משפחת כל תת-קבוצה של קבוצה סדורה היטב הפונקציות <math>Af</math> - גם היא סדורה היטב. (משום שכל תת-קבוצה של תת-הקבוצה היא גם תת-קבוצה של שתחומן מוכל בקבוצה <math>A</math>, ולכן יש בה איבר ראשון).# שרשרת היא סדורה היטב אם בכל תת-קבוצה לא ריקה שלה יש איבר מינימליותמונתן מוכלת בקבוצה <math>B</math>.
==== רישות ====תרגיל: המשפחה <math>X</math> מקיימת את תנאי הלמה של צורן עבור קבוצות.
תת-קבוצה לכן, יש במשפחה <math>HX</math> של קבוצה סדורה היטב איבר מקסימלי <math>Af</math> נקראת '''רישא''', אם היא "סגורה כלפי מטה", כלומר כל איבר של . (מבחינת הכלה) מ <math>A</math> הקטן מאיזשהו איבר של <math>H</math> שייך גם הוא ל <math>HB</math>.נבחן את האפשרויות השונות:
בפרט, א. תחום הפונקציה <math>f</math> הוא הקבוצה הריקה היא רישא<math>A</math> כולה. אז <math>f\colon A\to B</math> פונקציה חד-חד ערכית, ולכן <math>|A|\le |B|</math>.
'''הערה'''ב. איחוד משפחה של רישות של תמונת הפונקציה <math>f</math> היא הקבוצה <math>B</math> כולה. אז <math>f^{-1}\colon B\to A</math> היא פונקציה (במובן הרגיל) חד-חד ערכית, ולכן <math>|B|\le |A|</math> הוא רישא.
לכל ג. נניח בשלילה שאף אחד מבין (א) או (ב) אינו מתקיים. אז יש איברים <math>a\in A,b\in B</math> נסמן כך ש <math>a</math> אינו בתחום הפונקציה <math>b</math> ו <math>f</math> אינו בתמונת הפונקציה <math>f</math>.במקרה זה, אפשר להרחיב את הפונקציה <math>f</math> לפונקציה <math>f':=f\cup\ A_{<(a,b)\} </math>, או במלים אחרות, על ידי הגדרת <math>f'(a)= \{b</math> (ועבור <math>x \in A : x < a\operatorname{dom}(f)</math>נגדיר <math>f'(x)=f(x)</math>). זוהי תמיד רישא של Aנקבל פונקציה המרחיבה ממש את הפונקציה <math>f</math> ושייכת ל <math>X</math> (בדוק!), בסתירה למקסימליות <math>f</math> במשפחה <math>X</math>.
'''טענה'''. לכל רישא לסיכום, בהכרח מתקיים (א) (ואז <math>H\neq |A|\le |B|</math> של קבוצה סדורה היטב ) או (ב) (ואז <math>A</math> קיים <math>a |B|\in le |A|</math> כך ). מ.ש-<math>H = A_{<a}</math>. ל
'''הוכחה'''. כיון ש <math>H</math> סגורה כלפי מטה ו <math>A</math> סדורה קוית, כל איבר === סכום ומכפלה של <math>A</math> שאינו ב <math>H</math> הוא חסם מלעיל של <math>H</math>.בפרט, קבוצת החסמים מלעיל של <math>H</math> אינה ריקה ויש בה איבר ראשון <math>a</math>. מאותה סיבה, קל לראות ש <math>Hעוצמות ===A_{<a}</math>.
'''מסקנהמשפט'''. תהי <math>לכל קבוצה אינסופית A</math> קבוצה סדורה היטב. יש התאמה חד-חד-ערכית ועל, השומרת סדר, בין מתקיים <math>\ |A\times A| = |A|</math> לבין קבוצת הרישות האמיתיות של A.
במלים אחרות, קבוצת הרישות האמיתיות של '''מסקנה'''. אם <math>\max\{|A</math>|, הסדורה על ידי היחס <math>|B|\subseteq}</math>עוצמה אינסופית, איזומורפית כקבוצה סדורה ל-אז <math>\ |A|\cdot |B| = \max\{|A|,|B|\}</math>.
'''הוכחה'''. נניח ש-<math>|A|\leq |B|</math>. לפי ההנחה <math>|B|</math> אינסופית, ולכן <math>\ |B| =1\cdot |B| \leq |A|\cdot |B| \leq |B| \cdot |B| == הגרסה החזקה של הלמה של צורן ===|B|</math>.
'''הלמה של צורןמסקנה''' (גרסה חזקה). תהי X קבוצה סדורה היטב לא ריקהלכל שתי קבוצות אינסופיות A, עם התכונה שלכל תת-קבוצה סדורה היטב (ולא ריקה) ב-X יש חסם מלעיל. אז יש ב-X איבר מקסימליB מתקיים <math>\ |A| + |B| = \max\{|A|,|B|\}</math>.
גרסה זו חזקה מן הקודמת'''הוכחה'''. נניח ש-<math>|A|\leq |B|</math>. אז <math>|B|</math> אינסופית, משום שהפעם אנו מסתפקים בהנחה שיש חסם מלעיל לשרשראות שהן סדורות היטבולכן <math>|B|\leq |A| + |B| \leq = 2 |B| = \max\{2, ולא דורשים את התנאי הזה לכל השרשראות|B|\}=|B|</math>.
שאר הסעיף מוקדש ל'''הוכחת הלמה''' (על-פי Pierre-Yves Gaillard). ההוכחה בדרך השלילה. נניח שאין ל-X איבר מקסימלי. === לכל מרחב וקטורי יש בסיס ===
נסמן ב-<math>\ \Omega</math> את אוסף תת-הקבוצות הסדורות היטב של X'''משפט'''. לפי ההנחה, כל <math>W\in \Omega</math> היא חסומה מלעיל. יתרה מזו, לפי הנחת השלילה אין ב-W איבר מקסימלי של X, ולכן אפילו הקבוצה <math>\ W^{\circ} = \{x \in X : W < x\}</math> אינה ריקה. לפי אקסיומת הבחירה, קיימת פונקציה <math>\ p : \Omega \rightarrow X</math>, המתאימה לכל <math>\ W \in \Omega</math> איבר <math>\ p(W) \in W^{\circ}</math>, כלומר לכל W מתקיים <math>\ W < p(W)</math>מרחב וקטורי יש בסיס.
נאמר שתת-קבוצה סדורה היטב W היא '''מדוייקת''' זו טענה שאפשר להוכיח באינדוקציה אם לכל <math>\ w\in W</math> מתקיים <math>p(W_{<w}) = w</math>. (שימו לב שבכל מקרה האיבר w הוא חסם מלעיל של הרישא <math>\ W_{<w}</math>, ולכן ''יתכן'' ש-<math>\ p(W_{<w})=w</math>). ('''הערה'''. השאלה איזו תת-קבוצה W היא מדוייקת תלויה בפונקציה p, שעצם קיומה תלוי בהנחת השלילה על כך שאין ל-X איברים מקסימליים; משנוכיח שהנחה זו מביאה לסתירה, יתברר שאי-אפשר להגדיר את pיש למרחב בסיס סופי, וממילא יתפוגג המושג הזה ויאבד את משמעותו)אבל המקרה הכללי דורש כלים מתקדמים יותר.
'''הוכחה'''. יהי V מרחב וקטורי מעל שדה F. נסמן ב-X את משפחת תת-הקבוצות של V שאינן תלויות לינארית (הקבוצה הריקה שייכת ל-X, ולכן X אינה ריקה). נוכיח ש-X סגורה לאיחוד של שרשראות. אכן, תהי C שרשרת ב-X. נתבונן באיחוד <math>\ \Omega^*bigcup_{A \in C} A</math> את קבוצת תת-הקבוצות המדוייקות של X. תהי U האיחוד יהיו <math>\ v_1,\dots,v_n \in \bigcup_{A \in C} A</math> אברים של כל הקבוצות השייכות להמרחב, כך שקיימים סקלרים <math>\ \alpha_1,\dots,\alpha_n \in F</math> כך ש-<math>\ \Omega^*alpha_1v_1+\cdots+\alpha_nv_n = 0</math>. מטרתנו להוכיח לכל <math>\ i=1,\dots,n</math> יש איבר <math>\ A_i \in C</math> כך ש-U עצמה <math>\ v_i \in A_i</math>; אבל C היא קבוצה מדוייקתשרשרת, ולכן מבין האברים <math>\ A_1,\dots,A_n</math> יש אחד המכיל את כולם; נאמר שזהו <math>\ A_n</math>. אז <math>\ v_1,\dots,v_n \in A_n</math>, אבל <math>\ A_n</math> בלתי תלויה לינארית (משום שהיא שייכת ל-X), ולכן המקדמים <math>\ \alpha_1,\dots,\alpha_n</math> שווים כולם לאפס.
'''טענה 1'''. לכל <math>\ W,W' \in \Omega^*</math>, אחת מהן היא רישא לפי הלמה של השניה. אכןצורן, תהי Q האיחוד של כל הרישות המשותפות ל-<math>\ W,W'</math>; אז Q רישא משותפת בעצמה. אם נניח ש-<math>\ Q \neq W,W'</math>, אז יש <math>\ a\in W, a'\in W'</math> כך שב- <math>\ Q = W_{<a} = W'_{<a'}</math>X קבוצה מקסימלית, אבל אז <math>\ a = p(Q) = a'</math> מכיוון ששנסמן ב-<math>\ W,W'</math> מדוייקות, ויוצא ש-<math>\ Q \cup \{p(Q)\}</math> גם B. היא רישא משותפת לבלתי-<math>\ W,W'</math>, בסתירה להגדרה של Q. מכאן ש- <math>\ Q = W</math> או <math>\ Q = W'</math>, וזה מוכיח את טענה 1.  '''מסקנה 2'''. <math>\ \Omega^*</math> סדורה תלויה לינארית. אכן, מכל שני אברים של <math>\ \Omega^*</math>, אחד הוא רישא של השני, ולכן מוכל בו.  '''מסקנה 3'''. <math>\ U</math> היא שרשרת. אכן, לכל <math>\ a,a' \in U</math> יש <math>\ W,W' \in \Omega^*</math> כך ש-<math>\ a\in W, a' \in W'</math>; ולפי מסקנה 2 אפשר להניח <math>\ W \subseteq W'</math> (או להיפך) ואז <math>\ a,a' \in W'</math>, והרי <math>\ W'</math> שרשרת. '''טענה 4'''. כל <math>\ W \in\Omega^*</math> הוא רישא של U. אכן, <math>\ W \subseteq U</math> לפי ההגדרה של U כאיחוד משום שכל הקבוצות השייכות לב-<math>\ \Omega^*</math>, ולפי טענה 1, W היא רישא של UX כאלה)'''טענה 5'''. U סדורה היטב. תהי A תת-קבוצה לא ריקה של U, אז יש <math>\ W \in \Omega^*</math> החותכת נשאר להראות שהיא פורשת את A באופן לא ריק, ומכיוון ש-W סדורה היטב, יש לחיתוך <math>\ A \cap W\neq \emptyset</math> איבר מינימלי, m. נראה ש-m הוא המינימום של A כולההמרחב V. יהי <math>\ a v\in AV</math>. לפי מסקנה 3, a בר-השוואה עם m. אם <math>\ a < m</math> נקבל מטענה 4 שהוקטור v אינו נפרש על-<math>\ a \in W</math> בסתירה למינימליות של m. לכן <math>\ m \leq a</math>ידי B, כפי שרצינו. '''טענה 6'''. אז הקבוצה <math>\ U \in \Omega^*</math>. עלינו להראות ש-U מדוייקת, ולאור טענה 5, די להראות שלכל <math>\ u \in U</math> מתקיים <math>\ p(U_{<u}) = u</math>. אבל לפי הגדרת U, יש <math>\ W \in \Omega^*</math> כך ש-<math>\ u \in W</math>, ואז <math>\ U_{<u} \subset W</math> והטענה נובעת מכך ש-W מדוייקת. מכיוון ש-U סדורה היטב, יש איבר <math>\ p(U) \in X</math>. כצעד אחרון בהוכחה, נראה שגם <math>\ \bar{U} = UB \cup\{p(U)v\} \in \Omega^*</math>. ברור שבלתי-<math>\ \bar{U}</math> היא שרשרת. אם <math>\ u \in \bar{U}</math>, יש שתי אפשרויות: אם <math>\ u = p(U)</math> אז <math>\ \bar{U}_{<u} = U</math> וממילא <math>\ p(U) = u</math>; ואחרת <math>\ p(\bar{U}_{<u}) = p(U_{<u}) = u</math> לפי טענה 6. אבל מהגדרת U נובע עכשיו ש-<math>\ \bar{U} \subseteq U</math>תלויה לינארית, וזו סתירה משום שלפי הנחת השלילה <math>\ U < p(U)</math>. == שימושים == ללמה למקסימליות של צורן שימושים רבים בכל תחומי המתמטיקהB. נדגים כמה מהם. הקורא מוזמן להתמקד באלו העוסקות בתחומים המוכרים לולכן כל וקטור נפרש על-ידי B, ויכול לדלג ללא חששומכאן ש-B בסיס.
=== עקרון המקסימום של האוסדורף ===
'''הוכחה'''. נסמן ב-<math>\ \Omega</math> את אוסף הזוגות הסדורים <math> (A,R)</math> כאשר <math> A \subseteq X</math> ו-<math> R \subseteq A \times A</math> יחס סדר טוב על A. מגדירים על <math> \Omega</math> יחס סדר: <math> (A,R) \leq (A',R')</math> אם <math> A \subseteq A'</math> ו-<math> R = (A \times A) \cap R'</math>. לכל שרשרת <math> (A_{\lambda},R_{\lambda})</math> ב-<math> \Omega</math>, האיחוד <math> (\bigcup A_{\lambda}, \bigcup R_{\lambda})</math> הוא קבוצה סדורה היטב, ולכן איבר של <math> \Omega</math> שהוא חסם מלעיל של השרשרת. לפי הלמה של צורן, יש ל-<math> \Omega</math> איבר מקסימלי, <math> (Y,S)</math>. אם יש איבר <math> x \in X \setminus Y</math>; אם נעשיר את <math> Y</math> בקביעה ש-<math> y \leq x</math> לכל <math> y\in Y</math>, נקבל סדר טוב על <math> Y \cup \{x\}</math>, בסתירה למקסימליות של <math> (Y,S)</math>. מכאן ש-<math> Y = X</math>, וסיימנו.
 
=== יחס הסדר בין עוצמות הוא לינארי ===
 
'''משפט'''. לכל שתי קבוצות <math>A,B</math> מתקיים
<math>\ |A| \leq |B|</math> או <math>\ |B| \leq |A|</math>.
 
הוכחה: פונקציה <math>f</math> שתחומה הוא תת-קבוצה של הקבוצה <math>A</math> והתמונה שלה היא תת-קבוצה של הקבוצה <math>B</math> תיקרא '''פונקציה חלקית''' מ <math>A</math> ל <math>B</math>. תהי <math>X</math> משפחת כל הפונקציות החלקיות '''החד-חד ערכיות''' מ <math>A</math> ל <math>B</math>.
 
תרגיל: המשפחה <math>X</math> מקיימת את תנאי הלמה של צורן עבור קבוצות.
 
לכן, יש במשפחה <math>X</math> איבר מקסימלי <math>f</math>. זוהי פונקציה חלקית חד-חד ערכית מקסימלית (מבחינת הכלה) מ <math>A</math> ל <math>B</math>. נבחן את האפשרויות השונות:
 
א. תחום הפונקציה <math>f</math> הוא הקבוצה <math>A</math> כולה. אז <math>f\colon A\to B</math> פונקציה חד-חד ערכית, ולכן <math>|A|\le |B|</math>.
 
ב. תמונת הפונקציה <math>f</math> היא הקבוצה <math>B</math> כולה. אז <math>f^{-1}\colon B\to A</math> היא פונקציה (במובן הרגיל) חד-חד ערכית, ולכן <math>|B|\le |A|</math>.
 
ג. נניח בשלילה שאף אחד מבין (א) או (ב) אינו מתקיים. אז יש איברים <math>a\in A,b\in B</math> כך ש <math>a</math> אינו בתחום הפונקציה <math>b</math> ו <math>f</math> אינו בתמונת הפונקציה <math>f</math>.
במקרה זה, אפשר להרחיב את הפונקציה <math>f</math> לפונקציה <math>f':=f\cup\{(a,b)}</math>, או במלים אחרות, על ידי הגדרת <math>f'(a)=b</math> (ועבור <math>x\in\operatorname{dom}(f)</math> נגדיר <math>f'(x)=f(x)</math>). נקבל פונקציה חלקית חד-חד ערכית (בדוק!) מ <math>A</math> ל <math>B</math> המרחיבה ממש את הפונקציה <math>f</math>, בסתירה למקסימליות <math>f</math> במשפחה <math>X</math>.
 
לסיכום, בהכרח מתקיים (א) (ואז <math>|A|\le |B|</math>) או (ב) (ואז <math>|B|\le |A|</math>). מ.ש.ל
 
=== סכום ומכפלה של עוצמות ===
 
'''משפט'''. לכל קבוצה אינסופית A מתקיים <math>\ |A\times A| = |A|</math>.
 
'''מסקנה'''. אם <math>\max\{|A|,|B|\}</math> עוצמה אינסופית, אז <math>\ |A|\cdot |B| = \max\{|A|,|B|\}</math>.
 
'''הוכחה'''. נניח ש-<math>\ |A|\leq |B|</math>; לפי ההנחה |B| אינסופית, ולכן <math>\ |B| = 1\cdot |B| \leq |A|\cdot |B| \leq |B| \cdot |B| = |B|</math>.
 
'''מסקנה'''. לכל שתי קבוצות אינסופיות A,B מתקיים <math>\ |A| + |B| = \max\{|A|,|B|\}</math>.
 
'''הוכחה'''. <math>\ \max\{|A|,|B|\} \leq |A| + |B| \leq = 2 \max\{|A|,|B|\} = \max\{|A|,|B|\}</math>.
 
=== לכל מרחב וקטורי יש בסיס ===
 
'''משפט'''. לכל מרחב וקטורי יש בסיס.
 
זו טענה שאפשר להוכיח באינדוקציה אם יש למרחב בסיס סופי, אבל המקרה הכללי דורש כלים מתקדמים יותר.
 
'''הוכחה'''. יהי V מרחב וקטורי מעל שדה F. נסמן ב-X את משפחת תת-הקבוצות של V שאינן תלויות לינארית (הקבוצה הריקה שייכת ל-X, ולכן X אינה ריקה). נוכיח ש-X סגורה לאיחוד של שרשראות. אכן, תהי C שרשרת ב-X. נתבונן באיחוד <math>\ \bigcup_{A \in C} A</math>. יהיו <math>\ v_1,\dots,v_n \in \bigcup_{A \in C} A</math> אברים של המרחב, כך שקיימים סקלרים <math>\ \alpha_1,\dots,\alpha_n \in F</math> כך ש-<math>\ \alpha_1v_1+\cdots+\alpha_nv_n = 0</math>. לכל <math>\ i=1,\dots,n</math> יש איבר <math>\ A_i \in C</math> כך ש-<math>\ v_i \in A_i</math>; אבל C היא שרשרת, ולכן מבין האברים <math>\ A_1,\dots,A_n</math> יש אחד המכיל את כולם; נאמר שזהו <math>\ A_n</math>. אז <math>\ v_1,\dots,v_n \in A_n</math>, אבל <math>\ A_n</math> בלתי תלויה לינארית (משום שהיא שייכת ל-X), ולכן המקדמים <math>\ \alpha_1,\dots,\alpha_n</math> שווים כולם לאפס.
 
לפי הלמה של צורן, יש ב-X קבוצה מקסימלית, שנסמן ב-B. היא בלתי-תלויה לינארית (משום שכל הקבוצות ב-X כאלה). נשאר להראות שהיא פורשת את המרחב V. יהי <math>\ v\in V</math>. אם הוקטור v אינו נפרש על-ידי B, אז הקבוצה <math>\ B \cup \{v\}</math> בלתי-תלויה לינארית, וזו סתירה למקסימליות של B. לכן כל וקטור נפרש על-ידי B, ומכאן ש-B בסיס.
=== יש על-מסנן לא ראשי ===
'''הערה'''. המשפט על קיום בסיס למרחב וקטורי הוא מקרה פרטי: אם M הוא מרחב וקטורי מעל השדה F, כל תת-מרחב חד-ממדי הוא פשוט, ולכן M שווה לתשתית של עצמו. לפי המשפט M הוא סכום ישר של תת-מרחבים חד-ממדיים, כלומר יש לו בסיס.
 
== הוכחת הלמה של צורן ==
 
בסעיף זה נוכיח את הלמה של צורן. למעשה נוכיח טענה חזקה יותר.
 
=== קבוצות סדורות היטב ===
 
אומרים שקבוצה סדורה <math>A</math> היא '''סדורה היטב''' אם בכל תת-קבוצה לא ריקה שלה יש איבר ראשון (איבר שהוא קטן או שווה לכל איבר אחר בתת-הקבוצה; לא די בקיומו של איבר מינימלי).
 
'''הערות'''
# כל קבוצה סדורה היטב היא שרשרת. אכן, יהיו <math>a,b</math> אברים בקבוצה, אז בקבוצה הלא-ריקה <math>\{a,b\}</math> יש איבר ראשון, שהוא איבר הקטן מן האיבר השני. לכן כל שני אברים ניתנים להשוואה.
 
# כל תת-קבוצה של קבוצה סדורה היטב <math>A</math> - גם היא סדורה היטב. (משום שכל תת-קבוצה של תת-הקבוצה היא גם תת-קבוצה של <math>A</math>, ולכן יש בה איבר ראשון).
# שרשרת היא סדורה היטב אם בכל תת-קבוצה לא ריקה שלה יש איבר מינימלי.
 
==== רישות ====
 
תת-קבוצה <math>H</math> של קבוצה סדורה היטב <math>A</math> נקראת '''רישא''', אם היא "סגורה כלפי מטה", כלומר כל איבר של <math>A</math> הקטן מאיזשהו איבר של <math>H</math> שייך גם הוא ל <math>H</math>.
 
בפרט, הקבוצה הריקה היא רישא.
 
'''הערה'''. איחוד משפחה של רישות של <math>A</math> הוא רישא.
 
לכל <math>a\in A</math> נסמן <math>\ A_{<a} = \{x \in A : x < a\}</math>. זוהי תמיד רישא של A.
 
'''טענה'''. לכל רישא <math>H\neq A</math> של קבוצה סדורה היטב <math>A</math> קיים <math>a \in A</math> כך ש-<math>H = A_{<a}</math>.
 
'''הוכחה'''. כיון ש <math>H</math> סגורה כלפי מטה ו <math>A</math> סדורה קוית, כל איבר של <math>A</math> שאינו ב <math>H</math> הוא חסם מלעיל של <math>H</math>.
בפרט, קבוצת החסמים מלעיל של <math>H</math> אינה ריקה ויש בה איבר ראשון <math>a</math>. מאותה סיבה, קל לראות ש <math>H=A_{<a}</math>.
 
'''מסקנה'''. תהי <math>A</math> קבוצה סדורה היטב. יש התאמה חד-חד-ערכית ועל, השומרת סדר, בין <math>A</math> לבין קבוצת הרישות האמיתיות של A.
 
במלים אחרות, קבוצת הרישות האמיתיות של <math>A</math>, הסדורה על ידי היחס <math>\subseteq</math>, איזומורפית כקבוצה סדורה ל-<math>A</math>.
 
=== הגרסה החזקה של הלמה של צורן ===
 
'''הלמה של צורן''' (גרסה חזקה). תהי X קבוצה סדורה לא ריקה, עם התכונה שלכל תת-קבוצה סדורה היטב (ולא ריקה) ב-X יש חסם מלעיל. אז יש ב-X איבר מקסימלי.
 
גרסה זו חזקה מן הקודמת, משום שהפעם אנו מסתפקים בהנחה שיש חסם מלעיל לשרשראות שהן סדורות היטב, ולא דורשים את התנאי הזה לכל השרשראות.
 
שאר הסעיף מוקדש ל'''הוכחת הלמה''' (על-פי Pierre-Yves Gaillard). ההוכחה בדרך השלילה. נניח שאין ל-X איבר מקסימלי.
 
נסמן ב-<math>\ \Omega</math> את אוסף תת-הקבוצות הסדורות היטב של X. לפי ההנחה, כל <math>W\in \Omega</math> היא חסומה מלעיל. יתרה מזו, לפי הנחת השלילה אין ב-W איבר מקסימלי של X, ולכן אפילו הקבוצה <math>\ W^{\circ} = \{x \in X : W < x\}</math> אינה ריקה. לפי אקסיומת הבחירה, קיימת פונקציה <math>\ p : \Omega \rightarrow X</math>, המתאימה לכל <math>\ W \in \Omega</math> איבר <math>\ p(W) \in W^{\circ}</math>, כלומר לכל W מתקיים <math>\ W < p(W)</math>.
 
נאמר שתת-קבוצה סדורה היטב W היא '''מדוייקת''' אם לכל <math>\ w\in W</math> מתקיים <math>p(W_{<w}) = w</math>. (שימו לב שבכל מקרה האיבר w הוא חסם מלעיל של הרישא <math>\ W_{<w}</math>, ולכן ''יתכן'' ש-<math>\ p(W_{<w})=w</math>). ('''הערה'''. השאלה איזו תת-קבוצה W היא מדוייקת תלויה בפונקציה p, שעצם קיומה תלוי בהנחת השלילה על כך שאין ל-X איברים מקסימליים; משנוכיח שהנחה זו מביאה לסתירה, יתברר שאי-אפשר להגדיר את p, וממילא יתפוגג המושג הזה ויאבד את משמעותו).
 
נסמן ב-<math>\ \Omega^*</math> את קבוצת תת-הקבוצות המדוייקות של X. תהי U האיחוד של כל הקבוצות השייכות ל-<math>\ \Omega^*</math>. מטרתנו להוכיח ש-U עצמה היא קבוצה מדוייקת.
 
'''טענה 1'''. לכל <math>\ W,W' \in \Omega^*</math>, אחת מהן היא רישא של השניה. אכן, תהי Q האיחוד של כל הרישות המשותפות ל-<math>\ W,W'</math>; אז Q רישא משותפת בעצמה. אם נניח ש-<math>\ Q \neq W,W'</math>, אז יש <math>\ a\in W, a'\in W'</math> כך ש- <math>\ Q = W_{<a} = W'_{<a'}</math>, אבל אז <math>\ a = p(Q) = a'</math> מכיוון ש-<math>\ W,W'</math> מדוייקות, ויוצא ש-<math>\ Q \cup \{p(Q)\}</math> גם היא רישא משותפת ל-<math>\ W,W'</math>, בסתירה להגדרה של Q. מכאן ש- <math>\ Q = W</math> או <math>\ Q = W'</math>, וזה מוכיח את טענה 1.
 
'''מסקנה 2'''. <math>\ \Omega^*</math> סדורה לינארית. אכן, מכל שני אברים של <math>\ \Omega^*</math>, אחד הוא רישא של השני, ולכן מוכל בו.
 
'''מסקנה 3'''. <math>\ U</math> היא שרשרת. אכן, לכל <math>\ a,a' \in U</math> יש <math>\ W,W' \in \Omega^*</math> כך ש-<math>\ a\in W, a' \in W'</math>; ולפי מסקנה 2 אפשר להניח <math>\ W \subseteq W'</math> (או להיפך) ואז <math>\ a,a' \in W'</math>, והרי <math>\ W'</math> שרשרת.
 
'''טענה 4'''. כל <math>\ W \in\Omega^*</math> הוא רישא של U. אכן, <math>\ W \subseteq U</math> לפי ההגדרה של U כאיחוד הקבוצות השייכות ל-<math>\ \Omega^*</math>, ולפי טענה 1, W היא רישא של U.
 
'''טענה 5'''. U סדורה היטב. תהי A תת-קבוצה לא ריקה של U, אז יש <math>\ W \in \Omega^*</math> החותכת את A באופן לא ריק, ומכיוון ש-W סדורה היטב, יש לחיתוך <math>\ A \cap W\neq \emptyset</math> איבר מינימלי, m. נראה ש-m הוא המינימום של A כולה. יהי <math>\ a \in A</math>. לפי מסקנה 3, a בר-השוואה עם m. אם <math>\ a < m</math> נקבל מטענה 4 ש-<math>\ a \in W</math> בסתירה למינימליות של m. לכן <math>\ m \leq a</math>, כפי שרצינו.
 
'''טענה 6'''. <math>\ U \in \Omega^*</math>. עלינו להראות ש-U מדוייקת, ולאור טענה 5, די להראות שלכל <math>\ u \in U</math> מתקיים <math>\ p(U_{<u}) = u</math>. אבל לפי הגדרת U, יש <math>\ W \in \Omega^*</math> כך ש-<math>\ u \in W</math>, ואז <math>\ U_{<u} \subset W</math> והטענה נובעת מכך ש-W מדוייקת.
 
מכיוון ש-U סדורה היטב, יש איבר <math>\ p(U) \in X</math>. כצעד אחרון בהוכחה, נראה שגם <math>\ \bar{U} = U\cup\{p(U)\} \in \Omega^*</math>. ברור ש-<math>\ \bar{U}</math> היא שרשרת. אם <math>\ u \in \bar{U}</math>, יש שתי אפשרויות: אם <math>\ u = p(U)</math> אז <math>\ \bar{U}_{<u} = U</math> וממילא <math>\ p(U) = u</math>; ואחרת <math>\ p(\bar{U}_{<u}) = p(U_{<u}) = u</math> לפי טענה 6. אבל מהגדרת U נובע עכשיו ש-<math>\ \bar{U} \subseteq U</math>, וזו סתירה משום שלפי הנחת השלילה <math>\ U < p(U)</math>.
== קשרים לאקסיומות של המתמטיקה ==