שינויים

קפיצה אל: ניווט, חיפוש

הלמה של צורן

נוספו 693 בתים, 20:14, 17 במאי 2015
/* הוכחת הלמה של צורן */
תת-קבוצה H של קבוצה סדורה A נקראת '''רישא''', אם היא "סגורה כלפי מטה", כלומר לכל <math>\ a \in A</math> ולכל <math>\ h \in H</math>, אם <math>\ a < h</math> אז <math>\ a \in H</math>.
'''טענההערה'''. כל רישא תת-קבוצה של קבוצה סדורה היטב A, גם היא סדורה היטב. (משום שתת-קבוצה של תת-הקבוצה היא גם תת-קבוצה של A, ולכן יש לה מינימום).
לכל <math>\ a\in A</math> מסמנים <math>\ A_{<a} = \{x \in A\, | \, x < a\}</math>; זוהי תמיד רישא של A.
'''טענה'''. לכל רישא אמיתית H של קבוצה סדורה היטב A קיים <math>\ a \in A</math> כך ש-<math>\ H = A_{<a}</math>. '''הוכחה'''. קח a להיות המינימום של הקבוצה <math>\ H^\circ = \{x \in A | H < x \}</math> אינה ריקה משום שבשרשרת, הרישא היחידה שאינה חסומה היא הקבוצה כולה. קח <math>\ a = \min H^\circ</math> (קיים משום ש-A סדורה היטב). ברור ש-<math>\ H < a</math> ולכן <math>\ H \subseteq A_{<a}</math>. מצד שני לכל <math>\ a' \in A_{<a}</math> מתקיים <math>\ a' < a</math>, ולפי בחירת a פירושו של דבר הוא ש-<math>\ a' \not \in H^{\circ}</math>, כלומר קיים <math>\ x\in H</math> כך ש-<math>\ a' \leq x</math>, ומכיוון ש-H רישא, <math>\ a' \in H</math>.
=== הגרסה החזקה של הלמה של צורן ===
מכיוון ש-U סדורה היטב, יש איבר <math>\ p(U) \in X</math>. כצעד אחרון בהוכחה, נראה שגם <math>\ \bar{U} = U\cup\{p(U)\} \in \Omega</math>. ברור ש-<math>\ \bar{U}</math> היא שרשרת. אם <math>\ u \in \bar{U}</math>, יש שתי אפשרויות: אם <math>\ u = p(U)</math> אז <math>\ \bar{U}_{<u} = U</math> וממילא <math>\ p(U) = u</math>; ואחרת <math>\ p(\bar{U}_{<u}) = p(U_{<u}) = u</math> לפי טענה 6. אבל מהגדרת U נובע עכשיו ש-<math>\ \bar{U} \subseteq U</math>, וזו סתירה משום שלפי הנחת השלילה <math>\ U < p(U)</math>.
 
== שימושים ==