הבדלים בין גרסאות בדף "המשפט היסודי של החדוא"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
מ
שורה 1: שורה 1:
 
[[קטגוריה:אינפי]]
 
[[קטגוריה:אינפי]]
 
==המשפט היסודי של החדו"א==
 
==המשפט היסודי של החדו"א==
 
 
'''המשפט היסודי של החדו"א''', או '''משפט ניוטון-לייבניץ''', נותן דרך לחישוב האינטגרל המסוים, ולמעשה, מראה את הקשר ההדוק הקיים בין האינטגרל המסוים לבין האינטגרל הלא-מסוים.
 
'''המשפט היסודי של החדו"א''', או '''משפט ניוטון-לייבניץ''', נותן דרך לחישוב האינטגרל המסוים, ולמעשה, מראה את הקשר ההדוק הקיים בין האינטגרל המסוים לבין האינטגרל הלא-מסוים.
  
 
הניסוח:
 
הניסוח:
  
תהי <math>f</math> פונקציה אינטגרבילית על הקטע <math>[a,b]</math>, ונגדיר <math>F(x):=\int_a^x f(t)\mathrm{d}t</math>. אזי:
+
תהי <math>f</math> פונקציה אינטגרבילית על הקטע <math>[a,b]</math>, ונגדיר <math>F(x):=\int\limits_a^x {f(t)dt}</math>. אזי:
* הפונקציה <math>F</math> רציפה.
+
*הפונקציה <math>F</math> רציפה.
* בכל נקודה <math>x_0</math> שבה <math>f</math> רציפה, <math>F</math> גזירה, וכן <math>F'\left(x_0\right)=f\left(x_0\right)</math>.
+
*בכל נקודה <math>x_0</math> שבה <math>f</math> רציפה, <math>F</math> גזירה, וכן <math>F'(x_0)=f(x_0)</math>.
  
מסקנה מהמשפט היא שאם <math>f</math> רציפה, הפונקציה <math>F</math> שהגדרנו היא פונקציה קדומה שלה (ובפרט, יש ל-<math>f</math> פונקציה קדומה).
+
מסקנה מהמשפט היא שאם <math>f</math> רציפה, הפונקציה <math>F</math> שהגדרנו היא פונקציה קדומה שלה (ובפרט, יש ל- <math>f</math> פונקציה קדומה).
  
אם הפונקציה <math>f</math> רציפה, מקבלים את '''נוסחת ניוטון-לייבניץ''': אם <math>F</math> פונקציה קדומה של <math>f</math>, אזי <math>\int_a^b f(x)\mathrm{d}x=F(b)-F(a)</math>.
+
אם הפונקציה <math>f</math> רציפה, מקבלים את '''נוסחת ניוטון-לייבניץ''': אם <math>F</math> פונקציה קדומה של <math>f</math>, אזי <math>\displaystyle\int\limits_a^b f(x)dx=F(b)-F(a)</math> .

גרסה מ־17:05, 27 בינואר 2016

המשפט היסודי של החדו"א

המשפט היסודי של החדו"א, או משפט ניוטון-לייבניץ, נותן דרך לחישוב האינטגרל המסוים, ולמעשה, מראה את הקשר ההדוק הקיים בין האינטגרל המסוים לבין האינטגרל הלא-מסוים.

הניסוח:

תהי f פונקציה אינטגרבילית על הקטע [a,b], ונגדיר F(x):=\int\limits_a^x {f(t)dt}. אזי:

  • הפונקציה F רציפה.
  • בכל נקודה x_0 שבה f רציפה, F גזירה, וכן F'(x_0)=f(x_0).

מסקנה מהמשפט היא שאם f רציפה, הפונקציה F שהגדרנו היא פונקציה קדומה שלה (ובפרט, יש ל- f פונקציה קדומה).

אם הפונקציה f רציפה, מקבלים את נוסחת ניוטון-לייבניץ: אם F פונקציה קדומה של f, אזי \displaystyle\int\limits_a^b f(x)dx=F(b)-F(a) .