הבדלים בין גרסאות בדף "חדוא 2 - ארז שיינר"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
(מבחני השוואה לאינטגרלים חיוביים)
(מבחן דיריכלה)
שורה 152: שורה 152:
  
 
===מבחן דיריכלה===
 
===מבחן דיריכלה===
 +
*תהי פונקציה <math>f</math> אשר מקיימת 3 תנאים בקטע <math>[a,\infty)</math>
 +
**<math>f</math> מונוטונית יורדת
 +
**<math>\lim_{x\to\infty}f(x)=0</math>
 +
**הנגזרת <math>f'</math> רציפה.
 +
*תהי בנוסף פונקציה <math>g</math> אשר מקיימת 2 תנאים באותו הקטע:
 +
**<math>g</math> רציפה.
 +
**ל<math>g</math> יש קדומה <math>G</math> חסומה.
 +
*אזי האינטגרל <math>\int_a^\infty f(x)dx</math> מתכנס.
 
<videoflash>wU73--emtSg</videoflash>
 
<videoflash>wU73--emtSg</videoflash>
  

גרסה מ־11:07, 6 באפריל 2020

88-133 חשבון אינפיניטיסימלי 2

תוכן עניינים

תקציר ההרצאות

פרק 1 - האינטגרל הלא מסויים

  • הגדרה: F נקראת פונקציה קדומה של f בקטע A אם לכל נקודה בקטע מתקיים כי F'=f
  • האינטגרל הלא מסויים \int f(x)dx מסמן פונקציה קדומה של f.
  • תהי F קדומה של f, אזי קבוצת כל הקדומות של f שווה ל\{F+c|c\in\mathbb{R}\}
  • אינטגרלים מיידיים ידועים לנו מנוסחאות הגזירה.

שיטות למציאת קדומה

  • תהיינה f,g פונקציות בעלות קדומות, אזי:
    • \int (cf) = c \int f
    • \int (f+g) = \int f + \int g


אינטגרציה בחלקים

\int f'g = fg - \int fg'

שיטת הההצבה

פונקציה רציונאלית

  • הורדת דרגת המונה ע"י חילוק פולינומים


  • פירוק לשברים חלקיים


  • חישוב אינטגרל של כל שבר חלקי
    • נסמן I_n=\int \frac{1}{(1+t^2)^n} dt
    • אזי I_{n+1}=\frac{t}{2n(1+t^2)^n} + \left(1-\frac{1}{2n}\right)I_n

כאשר תנאי ההתחלה הוא I_1=\arctan(t)


הצבות אוניברסאליות

הצבות אוניברסאליות הוא כינוי כללי להצבות המעבירות פונקציות ממשפחה מסוימת לצורה של פונקציה רציונאלית אותה אנחנו יודעים לפתור. שימו לב שכיון ופתרון פונקציה רציונאלית דורש פירוק פולינומים, לעתים המעבר לפונקציה רציונאלית לא יקדם אותנו לקראת פתרון הבעיה.

פרק 2 - האינטגרל המסויים

סכומי דרבו ואינטגרל עליון ותחתון

הגדרת סכומי דרבו, אינטגרביליות והאינטגרל המסוים


תכונות של סכומי דרבו והאינטגרל המסוים

  • m(b-a)\leq \underline{S}(f,P)\leq \overline{S}(f,P)\leq M(b-a)


  • תהי חלוקה P ותהי העדנה שלה R=P\cup \{a\}
  • 0\leq \overline{S}(f,P)-\overline{S}(f,R)\leq \lambda(P)(M-m)
  • 0\leq \underline{S}(f,R)-\underline{S}(f,P)\leq \lambda(P)(M-m)


  • \underline{S}(f,P)\leq \underline{\int_a^b}f(x)dx\leq \overline{\int_a^b}f(x)dx\leq \overline{S}(f,P)

התכנסות סכומי דרבו

  • התכנסות סכומי הדרבו העליונים לאינטגרל העליון

פונקציות אינטגרביליות

  • פונקציה רציפה בקטע סגור אינטגרבילית בו


  • פונקציה חסומה בקטע סופי, ורציפה פרט למספר סופי של נקודות, אינטגרבילית בו


סכומי רימן

  • אינטגרביליות לפי רימן שקולה לאינטגרביליות לפי דרבו


אורך עקומה

  • L=\int_a^b \sqrt{(f'(x))^2+1}dx


אי שיוויון המשולש לאינטגרלים

  • \left|\int_a^b f\right|\leq \int_a^b |f|

פרק 3 - הקשר בין האינטגרל המסויים ללא מסויים

המשפט היסודי של החדו"א

  • עבור פונקציה אינטגרבילית, בנקודות בהן היא רציפה מתקיים כי S'(x)=\left(\int_a^x f(t)dt\right)' = f(x)


נוסחאת ניוטון לייבניץ

  • תהי f אינטגרבילים וF קדומה אזי \int_a^b f(x)dx = F(b)-F(a)


הגדרת המספר \pi, וחישוב היקף ושטח מעגל


נפח גוף סיבוב

  • \int_a^b \pi f^2(x)dx

פרק 4 - אינטגרלים לא אמיתיים (מוכללים)

השופר של גבריאל

הגדרת אינטגרלים לא אמיתיים

  • תהי f אינטגרבילית בקטע [a,t] לכל t\geq a אזי:
    • \int_a^\infty f(x)dx = \lim_{t\to\infty} \int_a^t f(x)dx
  • תהי f שאינה חסומה בקטע [a,b] ואינטגרבילית בקטע [t,b] לכל a<t<b אזי:
    • \int_a^b f(x)dx = \lim_{t\to a^+} \int_t^b f(x)dx


מבחני השוואה לאינטגרלים חיוביים

  • מבחן ההשוואה הראשון:
    • תהיינה f\geq g \geq 0 עבורן מוגדר אינטגרל לא אמיתי באותו הקטע עם אותה הנקודה הבעייתית אזי-
    • אם \int f מתכנס בקטע, גם \int g מתכנס בקטע
  • מבחן ההשוואה הגבולי:
    • תהיינה f,g\geq 0 עבורן מוגדר אינטגרל לא אמיתי באותו הקטע עם אותה הנקודה הבעייתית.
    • נחשב בנוסף את הגבול בנקודה הבעייתית \lim \frac{f}{g} =c.
    • אזי:
      • אם c=\infty, אזי אם \int f מתכנס גם \int g מתכנס.
      • אם c=0 אזי אם \int g מתכנס גם \int f מתכנס.
      • אם 0<c<\infty אזי האינטגרלים חברים \int f \sim \int g כלומר שניהם מתכנסים או שניהם מתבדרים.

התכנסות בהחלט וקריטריון היינה

מבחן דיריכלה

  • תהי פונקציה f אשר מקיימת 3 תנאים בקטע [a,\infty)
    • f מונוטונית יורדת
    • \lim_{x\to\infty}f(x)=0
    • הנגזרת f' רציפה.
  • תהי בנוסף פונקציה g אשר מקיימת 2 תנאים באותו הקטע:
    • g רציפה.
    • לg יש קדומה G חסומה.
  • אזי האינטגרל \int_a^\infty f(x)dx מתכנס.

פרק 5 - סדרות וטורי פונקציות

פרק 6 - טורי טיילור וקירובים