שינויים

קפיצה אל: ניווט, חיפוש

חדוא 2 - ארז שיינר

נוספו 437 בתים, 08:26, 25 באפריל 2020
/* טור הטיילור של ההופכית של סינוס, וקירוב מהיר של π */
*לכן טור המקלורן של <math>f(x)=\sqrt{1+x}</math> הינו <math>\displaystyle{\sum_{n=0}^\infty \frac{(-1)^{n+1}(2n)!}{(2n-1)(n!)^24^n}x^n}</math>
*על מנת להוכיח שהוא שווה לפונקציה, צ"ל שהשגיאה שואפת לאפס.
*יהי <math>-\frac{1}{2}<x<\frac{1}{2}</math>, נוכיח שהשגיאה עבורו שואפת לאפס.
*<math>\left|R_{n-1}(f,0,x)\right| = \frac{(2n)!}{(2n-1)(n!)^24^n}\frac{1}{(1+c)^{\frac{2n-1}{2}}}|x|^n
\leq \frac{(2n)!}{(2n-1)(n!)^24^n}\frac{1}{(1-|x|)^{\frac{2n-1}{2}}}|x|^n</math>
**<math>\frac{(2n+2)!}{(2n+1)((n+1)!)^24^{n+1}}\frac{|x|^{n+1}}{(1-|x|)^{\frac{2n+1}{2}}}\cdot
\frac{(2n-1)(n!)^24^n}{(2n)!}\frac{(1-|x|)^{\frac{2n-1}{2}}}{|x|^n}=</math>
**<math>=\frac{(2n-1)(2n+2)}{4(n+1)^2}\frac{|x|}{1-|x|}\to \frac{|x|}{1-|x|}< \frac{|x|}{1-\frac{1}{2}}=2|x|<1</math>*לכן לפי מבחן המנה השגיאה שואפת לאפס בתחום זה, וטור המקלורן מתכנס לפונקציה בתחום זה.  *הוכחנו שבתחום <math>\left(-\frac{1}{2},\frac{1}{2}\right)</math> מתקיים*<math>\sqrt{1+x} = \displaystyle{\sum_{n=0}^\infty \frac{(-1)^{n+1}(2n)!}{(2n-1)(n!)^24^n}x^n} = 1-\frac{x}{2}+\frac{x^2}{8}-...</math>