שינויים

קפיצה אל: ניווט, חיפוש

מבנים אלגבריים למדעי המחשב - ארז שיינר

נוספו 866 בתים, 08:33, 11 בנובמבר 2018
/* הרצאה 5 חבורת אוילר, משפטי אוילר ופרמה; פרק 6 מהספר */
*זוג מספרים שלמים <math>a,b</math> נקראים שקולים מודולו n אם קיים שלם <math>q</math> כך ש <math>a=b+q\cdot n</math>
*חלוקה עם שארית: לכל מספר טבעי a ולכל מספר שלם b קיים זוג שלמים '''יחיד''' <math>q,r</math> כך ש <math>b=q\cdot a+r</math> וגם <math>0\leq r < a</math>.
**קיום:
***יהי <math>a\in\mathbb{N}</math>
***אם <math>b=0</math> אזי <math>b=0\cdot a + 0</math>.
***יהי <math>b\geq 0</math> עבורו הטענה נכונה, נוכיח עבור <math>b+1</math>.
***<math>b+1=qa+r+1</math>.
***אם <math>r+1<a</math> סיימנו, אחרת <math>r+1=a</math> ולכן <math>b=(q+1)a+0</math>.
***אם <math>b<0</math> אזי <math>-b=qa+r</math>.
***אם <math>r=0</math> אזי <math>b=(-q)a+0</math> וסיימנו.
***אם <math>0<r<a</math> אזי <math>b=-qa-r=-qa-a+a-r=(-q-1)a+(a-r)</math> כאשר <math>0<a-r<a</math>.
**יחידות:
***נניח <math>b=q_1a+r_1=q_2a+r_2</math>.
***לכן <math>(q_1-q_2)a=r_2-r_1</math>.
***אבל <math>-(a-1)<r_2-r_2<a-1</math>, ולכן <math>r_2-r_1\neq ka</math>.
***לכן <math>q_1-q_2=0</math> כלומר <math>q_1=q_2</math> ולכן גם <math>r_1=r_2</math>.
*המספר q נקרא '''מנת''' החלוקה והמספר r נקרא '''שארית''' החלוקה.
*יהיו שני טבעיים <math>a,b</math> ויהיו <math>r_a,r_b</math> השאריות שלהם בחלוקה בn. אזי <math>ab\equiv r_ar_b \mod n</math>
*בפרט, בתנאי המשפט, <math>a^p\equiv a</math> מודולו p.
*למעשה התוצאה תקיפה לכל מספר טבעי <math>a</math>, כיוון ש <math>a^{\phi(n)}\equiv r^{\phi(n)} \mod n</math>, וגם השארית <math>r</math> זרה ל <math>n</math>.
 
==הרצאה 6 הצפנה סימטרית (מפתח פרטי), הצפנה אסימטרית (מפתח ציבורי), RSA; פרק 7 מ[http://abstract.ups.edu/aata/ הספר]==