שינויים

קפיצה אל: ניווט, חיפוש
/* מבחנים לדוגמא */
*[[מדיה:22ODETestA.pdf|מבחן מועד א' תשפ"ב]]
*[[מדיה:22ODETestB.pdf|מבחן מועד ב' תשפ"ב]]
*[[מדיה:23ODETestA.pdf|מבחן מועד א' תשפ"ג]]
=הרצאות=
==הרצאה 10 התמרת לפלס==
*התמרת לפלס היא העתקה לינארית בין מרחבי פונקציות.
*עבור הפונקציה <math>y(t)</math> המוגדרת בקטע <math>[0,\infty)</math> נגדיר את התמרת הלפלס <math>F(s)=\mathcal{L}(y)=\int_0^\infty e^{-st}fy(t)dt</math>.
*שימו לב שנהוג לסמן את הפונקציה לפני ההתמרה עם המשתנים x או t, ולאחר ההתמרה נהוג להתמש במשתנה s.
*אם מתקיים כי <math>|y(t)|\leq Me^{at}</math> אזי ההתמרה מתכנסת לכל <math>s>a</math>.
**הביטוי האחרון מתכנס לכל <math>s>a</math>.
*נניח כי כל הפונקציות שאנו עוסקים בהן חסומות על ידי אקספוננט באופן דומה.
 
 
*דוגמא - נחשב את ההתמרה של הפונקציה <math>e^{at}</math>.
**<math>F(s)=\mathcal{L}(e^{at})=\int_0^\infty e^{-st}e^{at}dt = \int_0^\infty e^{(a-s)t}dt = \left[\frac{e^{(a-s)t}}{a-s}\right]_0^\infty</math>
**לכל <math>s\geq a</math> האינטגרל הלא אמיתי מתכנס ונקבל כי <math>F(s)=\frac{1}{s-a}</math>
**במילים פשוטות התמרת לפלס של הפונקציה <math>e^{at}</math> הינה הפונקציה <math>\frac{1}{s-a}</math>.
 
 
*דוגמא - נחשב את ההתמרה של הפונקציה <math>sin(at)</math>.
**<math>F(s)=\mathcal{L}(sin(at)) = \int_0^\infty e^{-st}sin(at)dt</math>
**נבצע אינטגרציה בחלקים
**<math>\int_0^\infty e^{-st}sin(at)dt = \left[\frac{e^{-st}}{-s}sin(at)\right]_0^\infty + \frac{a}{s}\int_0^\infty e^{-st}cos(at)dt = \frac{a}{s}\int_0^\infty e^{-st}cos(at)dt </math>
**נבצע אינטגרציה בחלקים על האינטגרל החדש
**<math>\mathcal{L}(cos(at))=\int_0^\infty e^{-st}cos(at)dt = \left[\frac{e^{-st}}{-s}cos(at)\right]_0^\infty - \frac{a}{s}\int_0^\infty e^{-st}sin(at)dt = \frac{1}{s} - \frac{a}{s}F(s)</math>
**ביחד נקבל כי
**<math>F(s) = \frac{a}{s} \left[\frac{1}{s} - \frac{a}{s}F(s)\right]</math>
**נבודד את <math>F(s)</math> ונקבל כי
**<math>\mathcal{L}(sin(at)) = F(s) = \frac{a}{s^2+a^2}</math>
 
 
 
*דוגמא - נחשב את ההתמרה של הפונקציה <math>cos(at)</math>.
**במהלך הדוגמא הקודמת קיבלו את השיוויון
**<math>\mathcal{L}(sin(at)) = \frac{a}{s} \mathcal{L}(cos(at))</math>.
**ולכן <math>\mathcal{L}(cos(at)) = \frac{s}{a}\mathcal{L}(sin(at)) = \frac{s}{a}\cdot\frac{a}{s^2+a^2}=\frac{s}{s^2+a^2}</math>
 
*כעת <math>\mathcal{L}(y'')=s\mathcal{L}(y')-y'(0) = s^2F(s)-sy(0)-y'(0)</math>.
*וכן הלאה, עבור נגזרות מסדר גבוה.
 
 
===דוגמאות===
 
 
*דוגמא - נמצא את ההתמרה של האקספוננט
*נציב בנוסחא <math>\mathcal{L}(y')=s\mathcal{L}(y)-y(0)</math> את <math>y=e^{ax}</math>
*<math>\mathcal{L}(ae^{ax})=s\mathcal{L}(e^{ax})-1</math>
*סה"כ נקבל כי <math>\mathcal{L}(e^{ax})=\frac{1}{s-a}</math>
**<math>F(s)=\frac{y(0)}{s-r}</math>
**לכן <math>y=y(0)e^{rt}</math>
 
 
*דוגמא - נמצא את ההתמרה של סינוס וקוסינוס
*נסמן <math>F(s)=\mathcal{L}(\sin(ax))</math>, <math>G(s)=\mathcal{L}(\cos(ax))</math>
*נציב בנוסחא <math>\mathcal{L}(y')=s\mathcal{L}(y)-y(0)</math>:
**נציב <math>y=\sin(ax)</math> ונקבל <math>\mathcal{L}(a\cos(ax))=s\mathcal{L}(\sin(ax))-0</math> כלומר <math>aG(s)=sF(s)</math>
**נציב <math>y=\cos(ax)</math> ונקבל <math>\mathcal{L}(-a\sin(ax))=s\mathcal{L}(\cos(ax))-1</math> כלומר <math>-aF(s)=sG(s)-1</math>
*נקבל סה"כ כי
**<math>\mathcal{L}(sin(ax))=F(s)=\frac{a}{s^2+a^2}</math>
**<math>\mathcal{L}(cos(ax))=G(s)=\frac{s}{s^2+a^2}</math>
==הרצאה 11 - המשך התמרת לפלס==