שינויים

קפיצה אל: ניווט, חיפוש

מדר קיץ תשעב/סיכומים/הרצאות/30.7.12

נוספו 25 בתים, 15:39, 10 באוגוסט 2012
/* מבוא */
משוואה דיפרנציאלית היא משוואה המקשרת בין משתנה בלתי תלוי <math>x</math> לבין משתנה תלוי <math>y</math>. בניגוד למצב הנפוץ בו הפתרון של משוואה הוא נקודה, במד״ר הפתרון הוא פונקציה.
הצורה הכללית של משוואה דיפרנציאלית רגילה היא <math>F\Bigleft(x,y(x),y'(x),\dots,y^{(n)}(x)\Bigright)=0</math> (<math>F</math> פונקציה ב־<math>n+2</math> משתנים). הצורה הכללית של משוואה דיפרנציאלית חלקית היא <math>F\left(x,y,z(x,y),\frac{\partial z}{\partial x},\frac{\partial z}{\partial y},\frac{\partial^2 z}{\partial x\partial y}\right)=0</math>.
'''הגדרות:''' ''הסדר של מד״ר'' הוא דרגת הנגזרת הגבוהה ביותר במשוואה. ''המעלה'' היא החזקה של הנגזרת הגבוהה ביותר. נדגים:
לא תמיד קל לפתור מד״ר: בהינתן <math>y'={\mathrm e}^{-x^2}</math> נקבל <math>y=\int {\mathrm e}^{-x^2}\mathrm dx</math>, והפתרון אינו אלמנטרי. למרות זאת, זה פתרון מפורט מספיק לצרכינו. נעיר שקיימת פוקנציית השגיאה <math>\mbox{erf}</math> שעבורה <math>y=\frac\sqrt\pi2\mbox{erf}(x)+c</math>.
'''הגדרה:''' ''צורה נורמלית'' של מד״ר היא <math>y^{(n)}=f\left(x,y,y',\dots,y^{(n-1)}\right)</math> כאשר <math>n</math> סדר המשוואה. לפעמים קשה להגיע לצורה זו: לדוגמה, <math>y={\mathrm e}^{y'}+y'-x=0</math>.
''הערה:'' <math>\equiv</math> מסמן שיוויון זהותי, כלומר שיוויון שמתקיים בכל נקודה. אם <math>f(x)\equiv g(x)</math> אז בפרט <math>f(x)=g(x)</math>, ולכן לא תמיד נקפיד לסמן ב־<math>\equiv</math> שיוויון זהותי.
תהי <math>F(x,z_0,z_1,\dots,z_n)</math> פונקציה לינארית במשתנים <math>z_0,\dots,z_n</math>. אזי המד״ר המתאימה <math>F\left(x,y,y',\dots,y^{(n)}\right)=0</math> תקרא לינארית. <math>\sin(x)y''+x^2y'+3y-{\mathrm e}^{x^2}=0</math>, למשל. מד״ר לינארית מוצגת בצורה נורמלית כך: <math>y^{(n)}=\sum_{i=0}^{n-1}a_i(x)y^{(i)}+f(x)</math>. אם <math>f(x)\equiv0</math> אזי המד״ר נקראת "לינארית הומוגניתלינארית־הומוגנית". דוגמה: <math>(y')^2+x^2+2=0</math>.
'''הגדרה:''' ''פתרון של מד״ר'' הוא פונקציה <math>\varphi(x)</math> כך שבהצבת <math>y=\varphi(x)</math> המד״ר הופכת לזהות <math>F\left(x,\varphi(x),\varphi'(x),\dots,\varphi^{(n)}(x)\right)\equiv0</math>. דוגמה: <math>\varphi(x)=x^2</math> היא פתרון של <math>xy'-2y=0</math> מפני שבהצבה <math>y=\varphi(x)</math> נקבל <math>x(2x)-2x^2=0</math>, מה שמתקיים תמיד.
'''הגדרה:''' ''פתרון כללי של מד״ר'' הוא משפחת פונקציות <math>\varphi(x,c_1,\dots,c_n)</math> שכל אחת מהן פתרון התלוי ב־<math>n</math> פרמטרים וגזיר <math>n</math> פעמים לפי <math>x</math>. דוגמה:{{left|<math>\begin{align}&y''=x+1\\\implies&y'=\frac{x^2}2+x+c_1\\\implies&y=\frac{x^3}6+\frac{x^2}2+c_1x+c_2\end{align}</math>}}{{משל}}