שינויים

קפיצה אל: ניווט, חיפוש

מדר קיץ תשעב/סיכומים/תקציר

הוסרו 54 בתים, 08:51, 22 באוגוסט 2012
המשך יבוא
* נניח שהמד״ר לינארית־הומוגנית עם מקדמים קבועים. אזי נציב <math>y=\mathrm e^{rx}</math>, ולכן <math>y^{(k)}=r^k\mathrm e^{rx}</math> וגם <math>r^n+\sum_{k=0}^{n-1} a_k r^k</math> (זה הפולינום האופייני של המשוואה) שווה ל־0. אם השורשים השונים זה מזה הם <math>r_1,\dots,r_m</math> והריבויים שלהם <math>d_1,\dots,d_m</math> בהתאמה אזי הפתרון הכללי הוא <math>y=\sum_{k=1}^m\mathrm e^{r_kx}\sum_{i=0}^{d_k-1}c_{k,i}x^i</math>. אם <math>r_k</math> אינו ממשי ניתן לכתוב <math>r_k=\alpha+\beta\mathrm i</math> ואז, כיוון ש־<math>\overline{r_k}</math> שורש עם אותו ריבוי, נציב <math>C_1\mathrm e^{r_kx}+C_2\mathrm e^{\overline{r_k}x}=\mathrm e^{\alpha x}\Big(c_1\cos(\beta x)+c_2\sin(\beta x)\Big)</math>.
:* '''שיטת הניחוש/הבחירה/המקדמים הנעלמים:''' נניח שהמד״ר לינארית עם מקדמים קבועים וכן <math>f(x)=\mathrm e^{\lambda x}\sum_{k=0}^m b_k x^k</math>, כאשר <math>\lambda</math> קבועה (יכולה להיות גם 0), והריבוי של <math>\lambda</math> בפולינום האופייני הוא <math>d</math> (במידה ו־<math>\lambda</math> לא שורש נאמר <math>d=0</math>). אזי קיים פתרון פרטי מהצורה <math>\mathrm e^{\lambda x}x^d\sum_{k=0}^m B_k x^k</math> כאשר <math>b_m,B_m\ne0</math>. ''הערה:'' אם <math>f(x)=g(x)+h(x)</math> נוכל לפתור עבור <math>g(x),h(x)</math> בנפרד ולסכום את הפתרונות הפרטיים.
* '''משוואת אוילר(־לגראנג׳)''' היא מד״ר לינארית מהצורה <math>(x-x_0)^ny^{(n)}+\sum_{k=0}^{n-1}a_k (x-x_0)^k y^{(k)}=f(x)</math> עם <math>\forall k:\ a_k=\text{const.}</math>. מציבים <math>x-x_0=\begin{cases}\mathrm e^t,&x>0x_0\\-\mathrm e^t,&x<0x_0\end{cases}</math> במד״ר ההומוגנית ואז <math>y'=\frac{\mathrm dy}{\mathrm dt}\frac{\mathrm dt}{\mathrm dx}=\frac{\mathrm dy}{\mathrm dt}\frac1xfrac1{x-x_0},\ y''=\mathrm e^{-2t}\left(\frac{\mathrm d^2y}{\mathrm dt^2}-\frac{\mathrm dy}{\mathrm dt}\right),\ \dots</math>. נקבל משוואה לינארית־הומוגנית עם מקדמים קבועים, וניתן להמשיך לפתור אותה באופן זה. לחלופין, אפשר אנו לומדים מכך שאפשר להציב <math>y=(x-x_0)^r</math> במד״ר ההומוגנית ולקבל <math>r^n+\sum_{k=0}^{n-1} b_k r^k=0</math> (משוואה אינדיציאלית). אם השורשים השונים זה מזה הם <math>r_1,\dots,r_m</math> והריבויים שלהם <math>d_1,\dots,d_m</math> בהתאמה אזי הפתרון ההומוגני הכללי הוא <math>y=\sum_{k=1}^m (x-x_0)^{r_k}\sum_{i=0}^{d_k-1}c_{k,i}\ln^i(x-x_0)</math>. אם <math>r_k</math> אינו ממשי ניתן לכתוב <math>r_k=\alpha+\beta\mathrm i</math> ואז, כיוון ש־<math>\overline{r_k}</math> שורש עם אותו ריבוי, נציב <math>C_1xC_1(x-x_0)^{r_k}+C_2xC_2(x-x_0)^{\overline{r_k}}=(x-x_0)^\alpha\Big(c_1\cos(\beta\ln(\beta x-x_0))+c_2\sin(\beta\ln(\beta x-x_0))\Big)</math>.:* אם <math>f(x)=(x-x_0)^\lambda\sum_{k=0}^m b_k \ln^k(x-x_0)</math> כאשר <math>\lambda</math> קבועה (יכולה להיות גם 0), והריבוי של <math>\lambda</math> במשוואה האינדיציאלית הוא <math>d</math> (אם לא שורש <math>d=0</math>). אזי קיים פתרון פרטי מהצורה <math>(x-x_0)^\lambda\ln^d(x-x_0)x^\lambda\sum_{k=0}^m B_k \ln^k(x-x_0)</math> כאשר <math>b_m,B_m\ne0</math>.
===== פתרון מד״ר באמצעות טורי חזקות =====
* נתונה מד״ר מהצורה <math>y^{(n)}+\sum_{k=0}^{n-1} a_k(x)y^{(k)}=f(x)</math> כאשר <math>\forall k:\ f(x),a_k(x)\in C(a,b)</math> ותהי <math>x_0\in(a,b)</math>. אם <math>f</math> וכל המקדמים <math>a_k</math> אנליטיים סביב <math>x_0</math> עם רדיוס התכנסות <math>R</math> או יותר אזי קיים פתרון אנליטי סביב <math>x_0</math> של המד״ר עם רדיוס התכנסות <math>R</math> או יותר.
* '''טור פרוביניוס''' הוא טור מהצורה <math>(x-x_0)^r\sum_{k=0}^\infty a_k(x-x_0)^k</math>.
* בהנתן <math>a_2(x)y''+a_1(x)y'+a_0(x)y=0</math> נחלק ב־<math>a_2(x)</math>. תהי <math>x_0</math> נקודה סינגולרית של <math>\frac1{a_2(x)}</math>. אם קיימים הגבולות <math>L_k=\lim_{x\to x_0}(x-x_0)^{2-k}\frac{a_k(x)}{a_2(x)}</math> הנקודה נקראת סינגולרית־רגולרית. בקרבת <math>x_0</math> נקבל <math>0=(x-x_0)^2y''+\frac{a_1(x)}{a_2(x)}(x-x_0)y'+\frac{a_0(x)}{a_2(x)}y=(x-x_0)^2y''+(L_1+o(1))(x-x_0)y'+(L_0+o(1))y</math>. לפי משפט, אם <math>x_0</math> נקודה סינגולרית־רגולרית אזי קיים פתרון אנליטי למד״ר סביב <math>x_0</math> בצורת בצורת טור פרוביניוס. לכן נפתור עבור <math>o(1)=0</math>, נציב <math>y=(x-x_0)^r</math> ונקבל את הפתרונות בצורת טורים של המד״ר עם <math>o(1)=0</math> (אם פתרונות הפולינום האופייני של המד״ר עם <math>o(1)=0</math> הם <math>r_1,r_2</math> אז <math>y_k=(x-x_0)^{r_k}\sum_{i=0}^\infty (x-x_0)^i b_{k,i} x^i</math> פתרון פרטי). נציב פתרונות אלו במד״ר המקורית ונקבל את מקדמי הטורים. לכן אם <math>r_1-r_2\not\in\mathbb Z</math> הפתרון הכללי הוא <math>c_1y_1+c_2y_2</math> ואחרת (כאשר בה״כ <math>r_1\le r_2</math>) <math>c_1y_1\ln(x)+c_2y_2</math>.<br>''הערה:'' נאמר ש־<math>f\in o(g)</math> אם <math>\lim_{x\to x_0}\frac{f(x)}{g(x)}=0</math>. לעתים כותבים "<math>o(1)</math>" לציון איבר הנמצא בקבוצה זו, ולא הקבוצה עצמה.
:* '''משוואת בסל:''' <math>x^2y''+xy'+(x^2-m^2)y=0</math>. מתקיים <math>y''+\frac1xy'+\left(1-\frac{m^2}{x^2}\right)=0</math> ולכן <math>\lim x\frac1x=1,\ \lim x^2\left(1-\frac{m^2}{x^2}\right)=-m^2</math>, כלומר <math>0</math> סיגולריות־רגולרית.
:* '''פונציית גמא:''' <math>\Gamma(x):=\int\limits_0^\infty t^{x-1}\mathrm e^{-t}\mathrm dt</math>. היא מקיימת <math>\Gamma(xxּּ+1)=x\Gamma(x)</math> וגם <math>\forall n\in\mathbb N:\ \Gamma(n)=(n-1)!</math>.
:* '''משוואת אוילר:''' <math>x^2y''+xy'-m^2y=0</math>.