שינויים

קפיצה אל: ניווט, חיפוש

מדר קיץ תשעב/סיכומים/תקציר

נוספו 74 בתים, 17:40, 3 באוקטובר 2012
== משפטים חשובים ==
* '''משפט הקיום והיחידות למד״ר מסדר 1 בצורה נורמלית:''' תהי <math>\vec f(x,\vec y)</math> פוקנציה וקטורית המקיימת את תנאי ליפשיץ ב־<math>\vec y</math> בתיבה <math>B=[x_0-a,x_0+a]\times\prod_{k=1}^n[y_{0,k}-b_k,y_{0,k}+b_k]</math>, ונתונים תנאי ההתחלה <math>\vec y(x_0)=\vec y_0</math>. אזי למערכת יש פתרון אחד בדיוק בקטע <math>|x-x_0|<\min\!\left(\{a\}\cup\left\{\frac{b_k}{\displaystyle\max_{(x,\vec y)\in B}|f_k(x,\vec y)|}:k\in\{1,\dots,n\}\right\}\right)</math>.* כל מד״ר מסדר <math>n</math> שקולה למערכת של <math>n</math> מד״ר מסדר 1: <math>F\!\left(x,y,y',\dots,y^{(n)}\right)=0\iff\begin{cases}y_1=y'\\y_2=y_1'\\\vdots\\y_{n-1}=y_{n-2}'\\F\!\left(x,y,y_1,y_2,\dots,y_{n-1},y_{n-1}'\right)=0\end{cases}</math>. כמו כן, המערכת נורמלית/לינארית/לינארית־הומוגנית בהתאם למד״ר המקורית.
== שיטות לפתרון מד״ר ==
=== מד״ר מסדר 1 ===
* מד״ר בצורה דיפרנציאלית עם משתנים מופרדים היא מהצורה <math>M_1(x)N_1(y)\mathrm dx+M_2(x)N_2(y)\mathrm dxdy=0</math>. אם <math>\exists y_0:\ N_1(y_0)=0</math> אזי <math>y\equiv0equiv y_0</math> פתרון, ואם <math>\exists x_0:\ M_2(x_0)=0</math> אזי <math>x\equiv0equiv x_0</math> פתרון. אחרת <math>\int\frac{M_1(x)}{M_2(x)}\mathrm dx+\int\frac{N_2(y)}{N_1(y)}\mathrm dy=0</math>.
* נתונה מד״ר <math>y'=f(ax+by)</math>. אז נציב <math>z=ax+by</math> ו־<math>y'=\frac{z'-a}b</math>.
** {{הערה|הכללה:}} נתונה מד״ר <math>y'=f\!\left(\frac{Ax+By+C}{ax+by+c}\right)</math> . אם <math>\begin{vmatrix}A&B\\a&b\end{vmatrix}\ne0</math> נציב <math>\begin{cases}x=p+\alpha\\y=q+\beta\end{cases}</math> כאשר <math>\begin{pmatrix}A&B\\a&b\end{pmatrix}\begin{pmatrix}\alpha\\\beta\end{pmatrix}=-\begin{pmatrix}C\\c\end{pmatrix}</math> ונקבל <math>q_p'=g\!\left(\frac qp\right)</math>. אחרת נבחר <math>\lambda=\frac Aa=\frac Bb</math> ונציב <math>z=ax+by</math>.* '''מד״ר הומוגנית:''' נתונה מד״ר <math>y'=f\!\left(\frac yx\right)</math>. אזי נציב <math>z=\frac yx</math> ו־<math>y'=z'x+z</math>.* '''מד״ר לינארית:''' נתונה מד״ר <math>y'+p(x)y=q(x)</math>. אם היא לינארית־הומוגנית אזי <math>y=c\mathrm e^{-\sim\!\!\!\!\int p(x)\mathrm dx}</math>, ובכל מקרה <math>y=\mathrm e^{-\sim\!\!\!\!\int p(x)\mathrm dx}\int q(x)\mathrm e^{\sim\!\!\!\!\int p(x)\mathrm dx}\mathrm dx</math>.
* '''משוואת ברנולי:''' נתונה מד״ר <math>y'+p(x)y=q(x)y^n,\quad n\ne0,1</math>. נציב <math>z=y^{1-n}</math>, כאשר אם <math>n>1</math> אז <math>y\equiv0</math> פתרון רגולרי (כאשר הקבוע החופשי שואף ל־<math>\pm\infty</math>), אם <math>0<n<1</math> אז פתרון סינגולרי, ואם <math>n<0</math> אז לא פתרון. הפתרונות הרגולריים: <math>y=\sqrt[1-n]{\mathrm e^{-(1-n)\sim\!\!\!\!\int p(x)\mathrm dx}\int(1-n)q(x)\mathrm e^{(1-n)\sim\!\!\!\!\int p(x)\mathrm dx}\mathrm dx}</math>.
* מד״ר מהצורה <math>P(x,y)\mathrm dx+Q(x,y)\mathrm dy=0</math> היא מדויקת אם״ם יש <math>U</math> כך ש־<math>\mathrm dU</math> שווה לאגף ימין, מה שמתרחש אם״ם <math>\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}</math>.
** אם המד״ר אינה מדויקת ניתן לנסות להכפיל אותה ב־<math>\mu</math> כך שתהפוך למדויקת. <math>\mu</math> תלויה רק ב־<math>x</math> אם״ם <math>a=\frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}Q</math> תלויה רק ב־<math>x</math>, ואז <math>\mu(x)=\mathrm e^{\sim\!\!\!\!\int a\mathrm dx}</math>. היא תלויה רק ב־<math>y</math> אם״ם <math>b=\frac{\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}}P</math> תלויה רק ב־<math>y</math>, ואז <math>\mu(y)=\mathrm e^{\sim\!\!\!\!\int b\mathrm dy}</math>.
* '''משוואת ריקרטי:''' מד״ר מהצורה <math>y'+f(x)y^2+g(x)y+h(x)=0</math>. הפתרון הכללי הוא מהצורה <math>y=\frac{ca(x)+b(x)}{cA(x)+B(x)}</math>. אם <math>y(x)=\equiv y_p(x)</math> פתרון אזי <math>y(x)=y_p(x)+\left(\mathrm e^{\sim\!\!\!\!\int(2f(x)y_p(x)+g(x))\mathrm dx}\int\mathrm e^{-\sim\!\!\!\!\int(2f(x)y_p(x)+g(x))\mathrm dx}\mathrm dx\right)^{-1}</math> הפתרון הכללי.
* נתונה מד״ר <math>\sum_{k=0}^{n-1}p_k(x,y)(y')^k+(y')^n=0</math> ממעלה <math>n</math>. אזי קיימות פונקציות <math>f_k</math> שעבורן <math>\prod_{k=1}^n\Big(y'-f_k(x,y)\Big)=0</math>.
* אם <math>F(y,y')=0</math> נציב <math>z=y'</math> ואז <math>x=\frac yz+\int\frac y{z^2}\mathrm dz</math>. בנוסף, אם <math>y=\varphi(t)</math> ו־<math>z=\psi(t)</math> אזי <math>x=\int\frac{\varphi_t'(t)}{\psi(t)}\mathrm dt</math>.