שינויים

קפיצה אל: ניווט, חיפוש

מדר קיץ תשעב/סיכומים/תקציר

נוספו 5 בתים, 16:18, 13 באוקטובר 2012
* '''שיטת פיקארד:''' נתונה בעיית ההתחלה <math>\begin{cases}y'=f(x,y)\\y(x_0)=y_0\end{cases}</math>. נבחר פונקציה <math>\varphi_0</math> שעבורה <math>\varphi_0(x)\equiv y_0</math>, וניצור ממנה את סדרת הפונקציות המקיימת <math>\varphi_n(x)=y_0+\int\limits_{x_0}^x f(t,\varphi_{n-1}(t))\mathrm dt</math>. במידה והסדרה הנ״ל מוגדרת היטב (כלומר, כל האינטגרלים קיימים) <math>\varphi=\lim_{n\to\infty}\varphi_n</math> היא פתרון של הבעיה.
* '''משוואת קלרו:''' נתונה המד״ר <math>y=xy'+\psi(y')</math>. אזי <math>y=cx+\psi(c),\quad c\in\mathbb R</math> או (כאשר <math>p:=y'</math>) <math>\begin{cases}x=-\psi_p'(p)\\y=-p\psi_p'(p)+\psi(p)\end{cases}</math>.
* '''משוואת לגראנז׳:''' נתונה המד״ר <math>y=x\varphi(y')+\psi(y')</math> עבור <math>\varphi(y')\not\equiv y'</math>. נציב <math>p:=y'</math> ואז <math>p=\varphi(p)+\Big(x\varphi_p'(p)+\psi_p'(p)\Big)\frac{\mathrm dp}{\mathrm dx}</math>. לפיכך הפתרון הכללי הוא <math>x</math> מקיים <math>\begin{cases}x=\mathrm e^{\sim\!\!\!\!\int\frac{\varphi_p'(p)}{p-\varphi(p)}\mathrm dp}\int\frac{\psi_p'(p)}{p-\varphi(p)}\mathrm e^{-\sim\!\!\!\!\int\frac{\varphi_p'(p)}{p-\varphi(p)}\mathrm dp}\mathrm dp\\y=x\varphi(p)+\psi(p)\end{cases}</math> או <math>y=p_i x+\varphipsi(pp_i)\equiv p</math> (מקרה זה יש לבדוק בנפרד), ו־לכל <math>yp_i</math> מקיים כך ש־<math>yp_i=x\varphi(p)+\psi(pp_i)</math>.
=== מד״ר מסדר 2 ===