שינויים

קפיצה אל: ניווט, חיפוש

מדר קיץ תשעב/סיכומים/תקציר

נוספו 362 בתים, 00:01, 14 באוקטובר 2012
/* פתרון מד״ר באמצעות טורי חזקות */
:* אם <math>f(x)=(x-x_0)^\lambda\sum_{k=0}^m b_k \ln^k(x-x_0)</math> כאשר <math>\lambda</math> קבועה, והריבוי של <math>\lambda</math> במשוואה האינדיציאלית הוא <math>d</math> (אם לא שורש <math>d=0</math>). אזי קיים פתרון פרטי מהצורה <math>(x-x_0)^\lambda\ln^d(x-x_0)\sum_{k=0}^m B_k \ln^k(x-x_0)</math> כאשר <math>b_m,B_m\ne0</math>.
==== פתרון מד״ר באמצעות טורי חזקות ====
* נתונה מד״ר מהצורה <math>y^{(n)}+\sum_{k=0}^{n-1} a_k(x)y^{(k)}=f(x)</math> כאשר <math>\forall k:\ f(x),a_k(x)\in C(a,b)</math> ותהי <math>x_0\in(a,b)</math>. אם <math>f</math> וכל המקדמים <math>a_k</math> אנליטיים סביב <math>x_0</math> עם רדיוס התכנסות <math>R</math> או יותר אזי קיים פתרון אנליטי סביב <math>x_0</math> של המד״ר עם רדיוס התכנסות <math>R</math> או יותר.
* '''טור פרוביניוס''' הוא טור מהצורה <math>(x-x_0)^r\sum_{k=0}^\infty a_k(x-x_0)^k</math>.
* '''שיטת פרוביניוס:''' בהנתן <math>a_2(x)y''+a_1(x)y'+a_0(x)y=0</math> נחלק ב־<math>a_2(x)</math>. תהי <math>x_0</math> נקודה סינגולרית של <math>\frac1{a_2(x)}</math>. אם קיימים הגבולות <math>L_1=\lim_{x\to x_0}(x-x_0)\frac{a_1(x)}{a_2(x)},L_2=\lim_{x\to x_0}(x-x_0)^2\frac{a_0(x)}{a_2(x)}</math> הנקודה נקראת סינגולרית־רגולרית. בקרבת <math>x_0</math> נקבל <math>(x-x_0)^2y''+(L_1+o(1))(x-x_0)y'+(L_2+o(1))y=0</math>. לפי משפט, אם <math>x_0</math> נקודה סינגולרית־רגולרית אזי קיים פתרון אנליטי למד״ר סביב <math>x_0</math> בצורת בצורת טור פרוביניוס. נחשב את הפולינום האופייני של המד״ר עם <math>o(1)=0</math> ע״י הצבת <math>y=(x-x_0)^r</math>, ואם פתרונות הפולינום הם <math>r_1,r_2</math> אזי יש שני פתרונות פרטיים בת״ל מהצורה <math>y_k=(x-x_0)^{r_k}\sum_{i=0}^\infty b_{k,i}(x-x_0)^i,\quad k\in\{1,2\}</math> כאשר <math>r_1-r_2\not\in\mathbb Z</math> ו־<math>y_1=(x-x_0)^{r_1}\sum_{i=0}^\infty b_{1,i}(x-x_0)^i,y_2=y_1\ln(x-x_0)+(x-x_0)^{r_2}\sum_{i=0}^\infty b_{2,i}(x-x_0)^i</math> כאשר <math>r_1-r_2\in\mathbb Z</math> ומתקיים בה״כ <math>r_1\ge r_2</math>. נציב אותם במד״ר המקורית ונקבל את מקדמי הטורים.<br>''הערה:'' נאמר ש־<math>f\in o(g)</math> אם <math>\lim_{x\to x_0}\frac{f(x)}{g(x)}=0</math>. לעתים כותבים "<math>o(1)</math>" לציון איבר הנמצא בקבוצה זו, ולא הקבוצה עצמה.
:* '''פונציית גמא:''' <math>\forall x>0:\ \Gamma(x):=\int\limits_0^\infty t^{x-1}\mathrm e^{-t}\mathrm dt</math>. היא מקיימת <math>\Gamma(xּּ+1)=x\Gamma(x)</math> וגם <math>\forall n\in\mathbb N:\ \Gamma(n)=(n-1)!</math>. ניתן להרחיב את ההגדרה לכל <math>x\in\mathbb R</math> ע״י <math>\Gamma(x-1)=\frac{\Gamma(x)}{x-1}</math>. ערך חשוב: <math>\Gamma\!\left(\frac12\right)=\sqrt\pi</math>.:* '''פונקציית בסל(מסוג ראשון):''' <math>J_m(x)=\sum_{k=0}^\infty \frac{(-1)^k \Gamma(m+1)}{2^{2k}k!\Gamma(m+k+1)}x^{2k+m}</math> כאשר <math>m</math> היא ''דרגת הפונקציה''. :* '''משוואת בסל:''' <math>x^2y''+xy'+(x^2-m^2)y=0</math>. מתקיים <math>y''+\frac1xy'+\left(1-\frac{m^2}{x^2}\right)=0</math> ולכן <math>\lim x\frac1x=1,\ \lim x^2\left(1-\frac{m^2}{x^2}\right)=-m^2</math>, כלומר 0 סיגולריות־רגולרית. השורשים של הפולינום האופייני הם <math>\pm m</math> ולכן, כאשר אם <math>m\not\in\frac12\mathbb Z</math>, אז הפתרון הכללי הוא <math>c_1 J_m(x)+c_2 J_{-m}(x)</math>. אחרת הפתרון הכללי הוא <math>c_1J_m(x)+c_2Y_m(x)</math> כאשר <math>Y_m(x)=\lim_{m'\to m}\frac{J_{m'}(x)\cos(\pi m')-J_{-m'}(x)}{\sin(\pi m')}</math> (זו ''פונקציית בסל מסדר שני'').
==== מערכות מד״ר ====