שינויים

קפיצה אל: ניווט, חיפוש

מדר קיץ תשעב/סיכומים/תקציר

נוספו 1,617 בתים, 14:25, 14 באוקטובר 2012
* '''משוואת אוילר(–לגראנג׳)''' היא מד״ר לינארית מהצורה <math>(x-x_0)^ny^{(n)}+\sum_{k=0}^{n-1}a_k (x-x_0)^k y^{(k)}=f(x)</math> עם <math>\forall k:\ a_k=\text{const.}</math>. מציבים <math>x-x_0=\begin{cases}\mathrm e^t,&x>x_0\\-\mathrm e^t,&x<x_0\end{cases}</math> במד״ר ההומוגנית ואז <math>y'=\frac{\mathrm dy}{\mathrm dt}\frac{\mathrm dt}{\mathrm dx}=\frac{\mathrm dy}{\mathrm dt}\frac1{x-x_0},\ y''=\mathrm e^{-2t}\left(\frac{\mathrm d^2y}{\mathrm dt^2}-\frac{\mathrm dy}{\mathrm dt}\right),\ \dots</math>. נקבל משוואה לינארית־הומוגנית עם מקדמים קבועים, וניתן להמשיך לפתור אותה באופן זה. לחלופין, אנו לומדים מכך שאפשר להציב <math>y=(x-x_0)^r</math> במד״ר ההומוגנית ולקבל <math>r^n+\sum_{k=0}^{n-1} b_k r^k=0</math> (משוואה אינדיציאלית). אם השורשים השונים זה מזה הם <math>r_1,\dots,r_m</math> והריבויים שלהם <math>d_1,\dots,d_m</math> בהתאמה אזי הפתרון ההומוגני הכללי הוא <math>y=\sum_{k=1}^m (x-x_0)^{r_k}\sum_{i=0}^{d_k-1}c_{k,i}\ln^i(x-x_0)</math>. אם <math>r_k</math> אינו ממשי ניתן לכתוב <math>r_k=\alpha+\beta\mathrm i</math> ואז, כיוון ש־<math>\overline{r_k}</math> שורש עם אותו ריבוי, נציב <math>C_1(x-x_0)^{r_k}+C_2(x-x_0)^{\overline{r_k}}=(x-x_0)^\alpha\Big(c_1\cos(\beta\ln(x-x_0))+c_2\sin(\beta\ln(x-x_0))\Big)</math>.
:* אם <math>f(x)=(x-x_0)^\lambda\sum_{k=0}^m b_k \ln^k(x-x_0)</math> כאשר <math>\lambda</math> קבועה, והריבוי של <math>\lambda</math> במשוואה האינדיציאלית הוא <math>d</math> (אם לא שורש <math>d=0</math>). אזי קיים פתרון פרטי מהצורה <math>(x-x_0)^\lambda\ln^d(x-x_0)\sum_{k=0}^m B_k \ln^k(x-x_0)</math> כאשר <math>b_m,B_m\ne0</math>.
* '''התמרת לפלס ההפוכה:''' עבור <math>c</math> כך ש־<math>c>\mbox{Re}(s_i)</math> לכל קוטב <math>s_i</math> של <math>g</math>, מתקיים <math>\mathcal L^{-1}[g](t)=\int\limits_{-\infty}^\infty \mathrm e^{c+\mathrm ist}g(s)\mathrm ds</math>.
* נניח שמקדמי המד״ר קבועים. נפעיל התמרת לפלס על אגפי המד״ר, נבודד את <math>\mathcal L[y]</math> (תוך שימוש בהתמרת הנגזרת ובנוסחאות אחרות) ונמצא את ההתמרה ההפוכה שלה.
==== פתרון באמצעות טורי חזקות ====
==== מערכות מד״ר ====
* '''שיטת ההצבה:''' נתונה המערכת <math>\begin{cases}y_1'=g(y_1,y_2)\\y_2'=h(y_1,y_2)\end{cases}</math>. אזי <math>\frac{\mathrm dy_1}{\mathrm dy_2}=\frac{g(y_1,y_2)}{h(y_1,y_2)}</math> ולכן ניתן למצוא את <math>y_1</math> כתלות ב־<math>y_2</math> או להפך. את הפתרון נותר להציב במערכת ולפתור שתי מד״ר נפרדות.===== מערכות מד״ר לינאריות־הומוגניות לינאריות מסדר 1 עם מקדמים קבועים =====בפרק זה, אלא אם צוין אחרת, מערכת המד״ר היא <math>\mathbf y'=\mathbf{Ay}+\mathbf f(x)</math> כאשר <math>\mathbf y=\begin{pmatrix}y_1\\y_2\\\vdots\\y_n\end{pmatrix}</math> ו־, <math>\mathbf A=\begin{pmatrix}a_{1,1}&a_{1,2}&\cdots&a_{1,n}\\a_{2,1}&\ddots&\ddots&\vdots\\\vdots&\ddots&\ddots&\vdots\\a_{n,1}&\cdots&\cdots&a_{n,n}\end{pmatrix}</math> (<math>a_{i,j}</math> קבועים)ו־<math>\mathbf f(x)=\begin{pmatrix}f_1(x)\\f_2(x)\\\vdots\\f_n(x)\end{pmatrix}</math>. כמו כן, נסמן ב־<math>\mathbf v_i</math> את הו״ע של <math>\mathbf A</math>, ב־<math>\lambda_i</math> את הע״ע המתאימים להם וב־<math>d_i</math> את הריבויים האלגבריים של <math>\lambda_i</math>.* לכל <math>i</math>, <math>\mathbf y=\mathbf v_i\mathrm e^{\lambda_i x}</math> פתרון של המד״רההומוגנית המתאימה.* אם המד״ר הומוגנית ו־<math>\mathbf A</math> לכסינה אז <math>\mathbf y=\sum_{i=1}^n c_i\mathbf v_i\mathrm e^{\lambda_i x}</math> הוא הפתרון הכללי.* אם המד״ר הומוגנית ו־<math>\mathbf A</math> לא לכסינה אז הפתרון הכללי מהצורה <math>\mathbf y=\sum_{i=1}^n \mathrm e^{\lambda_i x}\sum_{j=0}^{d_i-1}\mathbf u_{i,j} x^j</math> כאשר <math>\mathbf u_{i,j}</math> וקטורים שניתן לחשב ע״י הצבה במד״ר.* נניח ש־<math>n=2</math> ונסמן והמד״ר הומוגנית. נסמן <math>\mathbf A=\begin{pmatrix}a&b\\c&d\end{pmatrix}</math>. אזי ולכן <math>\begin{cases}y_1'=a y_1+b y_2\\y_2'=c y_1+d y_2\end{cases}</math> ולכן וגם <math>y_2=\frac{y_1'-a y_1}b</math>. לבסוף,{{left|<math>\begin{align}y_1''&=a y_1'+b y_2'\\&=a y_1'+b(c y_1+d y_2)\\&=a y_1'+b c y_1+d y_1-a d y_1\end{align}</math>}}ונותר לפתור מד״ר מסדר 2.* אם <math>\mathbf A</math> לכסינה נסמן ב־<math>\mathbf P</math> מטריצה מלכסנת שלה: <math>\mathbf P^{-1}\mathbf{AP}=\mbox{diag}(\lambda_1,\lambda_2,\dots,\lambda_n)</math>. נגדיר <math>\mathbf z=\mathbf P^{-1}\mathbf y</math> ולכן <math>\mathbf z'=\mathbf P^{-1}\mathbf y'=\mbox{diag}(\lambda_1,\lambda_2,\dots,\lambda_n)\mathbf z+\mathbf P^{-1}\mathbf f</math>, ונותר לפתור <math>n</math> מד״ר נפרדות.