שינויים

קפיצה אל: ניווט, חיפוש

מדר קיץ תשעב/סיכומים/תקציר

נוספו 2 בתים, 14:35, 15 באוקטובר 2012
* '''משוואת ריקרטי:''' מד״ר מהצורה <math>y'+f(x)y^2+g(x)y+h(x)=0</math>. הפתרון הכללי הוא מהצורה <math>y=\frac{ca(x)+b(x)}{cA(x)+B(x)}</math>. אם <math>y(x)\equiv y_p(x)</math> פתרון אזי <math>y(x)=y_p(x)+\left(\mathrm e^{\sim\!\!\!\!\int(2f(x)y_p(x)+g(x))\mathrm dx}\int\mathrm e^{-\sim\!\!\!\!\int(2f(x)y_p(x)+g(x))\mathrm dx}\mathrm dx\right)^{-1}</math> הפתרון הכללי.
* נתונה מד״ר <math>\sum_{k=0}^{n-1}p_k(x,y)(y')^k+(y')^n=0</math> ממעלה <math>n</math>. אזי קיימות פונקציות <math>f_k</math> שעבורן <math>\prod_{k=1}^n\Big(y'-f_k(x,y)\Big)=0</math>.
* אם <math>F(y,y')=0</math> נציב <math>zp=y'</math> ואז <math>x=\frac yzyp+\int\frac y{zp^2}\mathrm dzdp</math>. בנוסף, אם <math>y=\varphi(t)</math> ו־<math>zp=\psi(t)</math> אזי <math>x=\int\frac{\varphi_t'(t)}{\psi(t)}\mathrm dt</math>.* אם <math>F(x,y')=0</math> נציב <math>zp=y'</math> ואז <math>y=zxpx-\int x\mathrm dzdp</math>. בנוסף, אם <math>x=\varphi(t)</math> ו־<math>zp=\psi(t)</math> אזי <math>y=\int\varphi_t'(t)\psi(t)\mathrm dt</math>.
* '''שיטת פיקארד:''' נתונה בעיית ההתחלה <math>\begin{cases}y'=f(x,y)\\y(x_0)=y_0\end{cases}</math>. נבחר פונקציה <math>\varphi_0</math> שעבורה <math>\varphi_0(x)\equiv y_0</math>, וניצור ממנה את סדרת הפונקציות המקיימת <math>\varphi_n(x)=y_0+\int\limits_{x_0}^x f(t,\varphi_{n-1}(t))\mathrm dt</math>. במידה והסדרה הנ״ל מוגדרת היטב (כלומר, כל האינטגרלים קיימים) <math>\varphi=\lim_{n\to\infty}\varphi_n</math> היא פתרון של הבעיה.
* '''משוואת קלרו:''' נתונה המד״ר <math>y=xy'+\psi(y')</math>. אזי <math>y=cx+\psi(c),\quad c\in\mathbb R</math> או (כאשר <math>p:=y'</math>) <math>\begin{cases}x=-\psi_p'(p)\\y=-p\psi_p'(p)+\psi(p)\end{cases}</math>.
=== מד״ר מסדר 2 ===
* בהנתן מד״ר <math>y''=f(x,y')</math> או <math>y''=f(y,y')</math> נציב <math>zp=y'</math> ונקבל <math>zp'=f(x,zp)</math> או <math>zz_ypp_y'=f(y,zp)</math>, בהתאמה. מתקיים <math>x=\int\frac{\mathrm dy}zp=\frac yzyp+\int\frac y{zp^2}\mathrm dzdp</math> ו־<math>y=\int zp\mathrm dx</math>.
=== מד״ר לינארית ===
* '''שיטת פרוביניוס:''' בהנתן <math>a_2(x)y''+a_1(x)y'+a_0(x)y=0</math> נחלק ב־<math>a_2(x)</math>. תהי <math>x_0</math> נקודה סינגולרית של <math>\frac1{a_2(x)}</math>. אם קיימים הגבולות <math>L_1=\lim_{x\to x_0}(x-x_0)\frac{a_1(x)}{a_2(x)},L_2=\lim_{x\to x_0}(x-x_0)^2\frac{a_0(x)}{a_2(x)}</math> הנקודה נקראת סינגולרית־רגולרית. בקרבת <math>x_0</math> נקבל <math>(x-x_0)^2y''+(L_1+o(1))(x-x_0)y'+(L_2+o(1))y=0</math>. לפי משפט, אם <math>x_0</math> נקודה סינגולרית־רגולרית אזי קיים פתרון אנליטי למד״ר סביב <math>x_0</math> בצורת בצורת טור פרוביניוס. נחשב את הפולינום האופייני של המד״ר עם <math>o(1)=0</math> ע״י הצבת <math>y=(x-x_0)^r</math>, ואם פתרונות הפולינום הם <math>r_1,r_2</math> אזי יש שני פתרונות פרטיים בת״ל מהצורה <math>y_k=(x-x_0)^{r_k}\sum_{i=0}^\infty b_{k,i}(x-x_0)^i,\quad k\in\{1,2\}</math> כאשר <math>r_1-r_2\not\in\mathbb Z</math> ו־<math>y_1=(x-x_0)^{r_1}\sum_{i=0}^\infty b_{1,i}(x-x_0)^i,y_2=y_1\ln(x-x_0)+(x-x_0)^{r_2}\sum_{i=0}^\infty b_{2,i}(x-x_0)^i</math> כאשר <math>r_1-r_2\in\mathbb Z</math> ומתקיים בה״כ <math>r_1\ge r_2</math>. נציב אותם במד״ר המקורית ונקבל את מקדמי הטורים.<br>''הערה:'' נאמר ש־<math>f\in o(g)</math> אם <math>\lim_{x\to x_0}\frac{f(x)}{g(x)}=0</math>. לעתים כותבים "<math>o(1)</math>" לציון איבר הנמצא בקבוצה זו, ולא הקבוצה עצמה.
:* '''פונציית גמא:''' <math>\forall x>0:\ \Gamma(x):=\int\limits_0^\infty t^{x-1}\mathrm e^{-t}\mathrm dt</math>. היא מקיימת <math>\Gamma(xּּ+1)=x\Gamma(x)</math> וגם <math>\forall n\in\mathbb N:\ \Gamma(n)=(n-1)!</math>. ניתן להרחיב את ההגדרה לכל <math>x\in\mathbb R</math> ע״י <math>\Gamma(x-1)=\frac{\Gamma(x)}{x-1}</math>. ערך חשוב: <math>\Gamma\!\left(\frac12\right)=\sqrt\pi</math>.
:* '''פונקציית בסל (מסוג ראשון):''' <math>J_m(x)=\sum_{k=0}^\infty \frac{(-1)^k \Gamma(m+1)}{2^{2k+m}k!\Gamma(m+k+1)}x^{2k+m}</math> כאשר <math>m</math> היא ''דרגת הפונקציה''.
:* '''משוואת בסל:''' <math>x^2y''+xy'+(x^2-m^2)y=0</math>. מתקיים <math>y''+\frac1xy'+\left(1-\frac{m^2}{x^2}\right)=0</math> ולכן <math>\lim x\frac1x=1,\ \lim x^2\left(1-\frac{m^2}{x^2}\right)=-m^2</math>, כלומר 0 סיגולריות־רגולרית. השורשים של הפולינום האופייני הם <math>\pm m</math> ולכן אם <math>m\not\in\frac12\mathbb Z</math> אז הפתרון הכללי הוא <math>c_1 J_m(x)+c_2 J_{-m}(x)</math>. אחרת הפתרון הכללי הוא <math>c_1J_m(x)+c_2Y_m(x)</math> כאשר <math>Y_m(x)=\lim_{m'\to m}\frac{J_{m'}(x)\cos(\pi m')-J_{-m'}(x)}{\sin(\pi m')}</math> (זו ''פונקציית בסל מסוג שני'').