שינויים

קפיצה אל: ניווט, חיפוש

מדר קיץ תשעב/סיכומים/תקציר

נוספו 478 בתים, 19:07, 15 באוקטובר 2012
''הערה:'' אינטגרל לא מסוים המסומן ב־<math>\int</math> הוא הצורה הכללית לפונקציות הקדומות לאינטגרנד, כלומר מוסיפים קבוע (למשל: <math>\int x\mathrm dx=\frac{x^2}2+c</math>). לעומת זאת, <math>\sim\!\!\!\!\!\!\int</math> נותן פונקציה קדומה אחת בלבד, ללא <math>c</math> (למשל: <math>\sim\!\!\!\!\!\!\!\int x\mathrm dx=\frac{x^2}2</math>).
== משפטים חשובים ==
* '''משפט הקיום והיחידות למד״ר מסדר 1 בצורה נורמלית:''' תהי <math>\vec f(x,\vec y)</math> פוקנציה וקטורית המקיימת את תנאי ליפשיץ ב־<math>\vec y</math> בתיבה <math>B=[x_0-a,x_0+a]\times\prod_{k=1}^n[y_{0,k}-b_k,y_{0,k}+b_k]</math>, ונתונים תנאי ההתחלה <math>\vec y(x_0)=\vec y_0</math>. אזי למערכת יש פתרון אחד בדיוק בקטע <math>|x-x_0|<\min\!\left(\{a\}\cup\left\{\frac{b_k}{\displaystyle\max_{(x,\vec y)\in B}|f_k(x,\vec y)|}:k\in\{1,\dots,n\}\right\}\right)</math>.
* '''משוואת ריקרטי:''' מד״ר מהצורה <math>y'+f(x)y^2+g(x)y+h(x)=0</math>. הפתרון הכללי הוא מהצורה <math>y=\frac{ca(x)+b(x)}{cA(x)+B(x)}</math>. אם <math>y(x)\equiv y_p(x)</math> פתרון אזי <math>y(x)=y_p(x)+\left(\mathrm e^{\sim\!\!\!\!\int(2f(x)y_p(x)+g(x))\mathrm dx}\int\mathrm e^{-\sim\!\!\!\!\int(2f(x)y_p(x)+g(x))\mathrm dx}\mathrm dx\right)^{-1}</math> הפתרון הכללי.
* נתונה מד״ר <math>\sum_{k=0}^{n-1}p_k(x,y)(y')^k+(y')^n=0</math> ממעלה <math>n</math>. אזי קיימות פונקציות <math>f_k</math> שעבורן <math>\prod_{k=1}^n\Big(y'-f_k(x,y)\Big)=0</math>.
* אם <math>F(y,y')=0</math> נציב <math>p=y'</math> ואז <math>x=\frac yp+\int\frac y{p^2}\mathrm dp</math>. בנוסףלחלופין, אם <math>y=\varphi(t)</math> ו־<math>p=\psi(t)</math> אזי <math>x=\int\frac{\varphi_t'(t)}{\psi(t)}\mathrm dt</math>.* אם <math>F(x,y')=0</math> נציב <math>p=y'</math> ואז <math>y=px-\int x\mathrm dp</math>. בנוסףלחלופין, אם <math>x=\varphi(t)</math> ו־<math>p=\psi(t)</math> אזי <math>y=\int\varphi_t'(t)\psi(t)\mathrm dt</math>.
* '''שיטת פיקארד:''' נתונה בעיית ההתחלה <math>\begin{cases}y'=f(x,y)\\y(x_0)=y_0\end{cases}</math>. נבחר פונקציה <math>\varphi_0</math> שעבורה <math>\varphi_0(x)\equiv y_0</math>, וניצור ממנה את סדרת הפונקציות המקיימת <math>\varphi_n(x)=y_0+\int\limits_{x_0}^x f(t,\varphi_{n-1}(t))\mathrm dt</math>. במידה והסדרה הנ״ל מוגדרת היטב (כלומר, כל האינטגרלים קיימים) <math>\varphi=\lim_{n\to\infty}\varphi_n</math> היא פתרון של הבעיה.
* '''משוואת קלרו:''' נתונה המד״ר <math>y=xy'+\psi(y')</math>. אזי <math>y=cx+\psi(c),\quad c\in\mathbb R</math> או (כאשר <math>p:=y'</math>) <math>\begin{cases}x=-\psi_p'(p)\\y=-p\psi_p'(p)+\psi(p)\end{cases}</math>.
* '''משוואת לגראנז׳:''' נתונה המד״ר <math>y=x\varphi(y')+\psi(y')</math> עבור <math>\varphi(y')\not\equiv y'</math>. נציב <math>p:=y'</math> ואז <math>p=\varphi(p)+\Big(x\varphi_p'(p)+\psi_p'(p)\Big)\frac{\mathrm dp}{\mathrm dx}</math>. לפיכך הפתרון הכללי הוא <math>\begin{cases}x=\mathrm e^{\sim\!\!\!\!\int\frac{\varphi_p'(p)}{p-\varphi(p)}\mathrm dp}\displaystyle\int\frac{\psi_p'(p)}{p-\varphi(p)}\mathrm e^{-\sim\!\!\!\!\int\frac{\varphi_p'(p)}{p-\varphi(p)}\mathrm dp}\mathrm dp\\y=x\varphi(p)+\psi(p)\end{cases}</math> או <math>y=p_i x+\psi(p_i)</math> לכל <math>p_i</math> כך ש־<math>p_i=\varphi(p_i)</math>.
=== מד״ר מסדר 2 ===