שינויים

קפיצה אל: ניווט, חיפוש

שיחה:88-230 סמסטר א' תשעא

נוספו 2,403 בתים, 09:57, 23 בדצמבר 2010
/* שאלה כללית לגבי שארית Peano */
'''לסיכום''' -- האם יש צורך להראות שאכן השארית בטור טיילור (כאשר מתקיימים התנאים להלן) הינה שארית Peano..??
 
::: אגב, את כלל לופיטל ל-n משתנים ניתן להוכיח בצורה דומה למשתנה אחד, כדלקמן:
::: תהיינה <math>f(\bold{x}), g(\bold{x})</math> פונקציה דיפרנציאבילית ומוגדרת בריבוע (מלבן) <math>K</math>. כאן, <math>\bold{x}=(x_1,x_2,...,x_n)</math>. (<math>\bold{x} \in \R^n</math>)
::: תהי <math>\bold{x}_0 \in K</math> כך שבנקודה הזו מתקיים -
::: <math>\lim_{\bold{x} \rightarrow \bold{x}_0} f(\bold{x}) = \lim_{\bold{x} \rightarrow \bold{x}_0} g(\bold{x}) = 0</math>
::: נוכל אפוא להגדיר את הפונקציות <math>f</math> ו-<math>g</math> כך ש-<math>f(\bold{x}_0)=g(\bold{x}_0)</math>.
::: דבר זה לא ישפיע, כמובן, על ערך גבול המנה במקודה, אך כך הפונקציות תהיינה רציפות בנקודה.
::: עפ"י משפט הערך הממוצע נוכל לרשום -
::: <math>\frac{f(\bold{x})}{g(\bold{x})} = \frac{f(\bold{x})-f(\bold{x}_0)}{g(\bold{x})-g(\bold{x}_0)} = \frac{\partial_{x_1}f(\xi)\cdot \Delta x_1+...+\partial_{x_n}(\xi)\cdot \Delta x_n}{\partial_{x_1}g(\eta)\cdot \Delta x_1 +...+ \partial_{x_n}\cdot \Delta x_n}</math>
::: היכן ש-<math>\Delta x_\mu = x_\mu - {x_0}_\mu</math> (<math>\forall 1 \le \mu \le n</math>)
::: כאשר, <math>\xi=\xi(\bold{x})</math> וכן, <math>\eta=\eta(\bold{x})</math>.
::: כמו-כן, ממשפט הערך הממוצע ידוע כי <math>\xi = \bold{x}_0 + t\cdot (\bold{x} - \bold{x}_0)</math> ו-<math>\eta = \bold{x}_0 + s\cdot (\bold{x}-\bold{x}_0)</math> כאשר <math>t,s \in [0,1]</math> (דהיינו, הנקודות נמצאות על הישר המבחר את <math>\bold{x}_0</math> ו-<math>\bold{x}</math>).
::: אם נבחר, פרט, סדרת נקודות <math>{\bold{x}_n}</math> כך ש- <math>\Delta x_\mu</math> הוא קבוע (לכל אינדקס <math>\mu</math>), אזי נקבל כי -
::: <math>\frac{f(\bold{x}_n)}{g(\bold{x}_n)} = \frac{Df(\xi(\bold{x}_n))}{Dg(\eta(\bold{x}_n))}</math>
::: כיוון ש-<math>\bold{x}_n \rightarrow \bold{x}_0</math>, וברור כי <math>\xi(\bold{x}_n),\eta(\bold{x}_n) \rightarrow \bold{x}_0</math>, וכן הנחנו שהגבול של מנת הנגזרות קיים, אזי
::: שלכל סדרה הגבול יתכנס גם לערך זה, וממילא קיבלנו את נכונות המשפט! מ.ש.ל!
== הגשת תרגיל 7 ==
לקבוצה של אגרונובסקי לא היה היום (ראשון- 19/12) תרגול אלא הרצאה. התרגול ייערך ביום שלישי. לא הגשתי היום את התרגול, אוכל להגיש אותו ביום שלישי?
משתמש אלמוני