שינויים

/* דוגמאות */
4. תהא <math>A</math> קבוצה. אזי אפשר (בעזרת חומר שראינו בתירגול על יחסי שקילות)
להגדיר <math>f:\{R \; | \; R \text{ Equivalence relation }\}\to \{\text{Partitions of }A\}</math> ע"י <math>f(R)=\nicefrac{A}{/R}</math> והיא תהיה חח"ע ועל כי ראינו את הפונקציה ההופכית לה ===תרגיל ===יהיו <math>f_1,\dots f_k:A\to A</math> הפיכות/חח"ע/על. הוכח שההרכבה <math>f_k \circ \dots \circ f_1</math> הפיכה/חח"ע/על הוכחה: חח"ע: נניח <math>(f_k \circ \dots \circ f_1)(x_1) =(f_k \circ \dots \circ f_1)(x_2)</math> אזי מח"ע של <math>f_k</math> נקבל כי <math>(f_{k-1} \circ \dots \circ f_1)(x_1) =(f_{k-1} \circ \dots \circ f_1)(x_2)</math> באופן דומה נמשיך (או באינדוקציה) ונקבל <math>x_1=x_2</math> על: יהא <math>y\in A</math> כיוון ש <math>f_k</math> על קיים <math>a_k\in A</math> כך ש <math>f_k(a_k)= y</math> באותו אופן קיים <math>a_{k-1}</math> כך ש <math>f_{k-1}(a_{k-1}=a_k</math> נמשיך באופן דומה (או באינקודציה) ונקבל <math>(f_k \circ \dots \circ f_1)(a_1)=(f_k \circ \dots \circ f_2)(a_2)=\dots f_k\circ f_{k-1} (a_{k-1}) = f_k(a_k)=y</math> הפיכות: נובע מחח"ע+על ===תרגיל ===הוכח כי אם <math>g\circ f \circ g =id</math> אז <math>f </math> הפיכה הוכחה: הרכבה של פונקציה חח"ע <math>(g\circ f) \circ g =id</math> גורר שהשמאלית <math>g</math> חח"ע הרכבה של פונקציה על <math>g\circ (f \circ g) =id</math> גורר שהימנית <math>g</math> על ביחד נקבל ש <math>g</math> חח"ע ועל כלומר הפיכה. נכפול ב <math>g^{-1}</math> מימין ומשמאל ונקבל כי <math>f=g^{-1}\circ g^{-1}</math> ואז <math>f</math> הפיכה כהרכבה של הפיכות.
659
עריכות