שינויים

משתמש:אור שחף/133 - רשימת משפטים

נוספו 4 בתים, 20:30, 2 ביוני 2016
/* טורים */
* נתון כי כל <math>f_n</math> רציפה ב-<math>x_0\in I</math> וכן <math>S=\sum_{n=1}^\infty f_n</math> במ"ש על <math>I</math>. אזי <math>S</math> רציפה ב-<math>x_0</math>.
* <math>S=\sum_{n=1}^\infty f_n</math> במ"ש על <math>[a,b]</math> וכל <math>f_n</math> אינטגרבילית ב-<math>[a,b]</math>. אזי <math>S</math> אינטגרבילית בקטע ומתקיים <math>\int\limits_a^b S=\sum_{n=1}^\infty\int\limits_a^b f</math>.
* <math>\{f_n\}_{n\in\mathbb N}</math> היא סדרת פוקציות פונקציות בעלות נגזרות רציפות ב-<math>I</math>. הטור <math>\sum_{n=1}^\infty f_n</math> מתכנס בנקודה אחת לפחות בקטע, וטור הנגזרות <math>s=\sum_{n=1}^\infty f_n'</math> מתכנס במ"ש על <math>I</math>. אזי <math>\sum_{n=1}^\infty f_n</math> מתכנס במ"ש לפונקציה גזירה <math>S</math> כך ש-<math>S'=s</math>.
====טורי חזקות====
* יהי <math>\sum_{n=0}^\infty a_n(x-x_0)^n</math> טור חזקות. רדיוס ההתכנסות <math>R=\frac1{\overline{\displaystyle\lim_{n\to\infty}}\sqrt[n]{|a_n|}}</math> מקיים שאם הנקודה <math>x</math> מקיימת <math>|x-x_0|<R</math> אזי הטור מתכנס בהחלט, ואם <math>|x-x_0|>R</math> הטור מתבדר. כמו כן, הטור מתכנס במ"ש ב-<math>[x_0-r,x_0+r]</math> לכל <math>0<r<R</math>.
* יהי <math>\sum_{n=0}^\infty a_n(x-x_0)^n</math> טור חזקות עם רדיוס התכנסות <math>R</math>. אם קיים <math>S=\lim_{n\to\infty}\frac{|a_n|}{|a_{n+1}|}</math> במובן הרחב אזי <math>S=R</math>.
* יהי <math>\sum_{n=0}^\infty a_n(x-x_0)^n</math> טור חזקות עם רדיוס התכנסות <math>R>0</math>. אזי <math>f(x)=\sum_{n=0}^\infty a_n(x-x_0)^n</math> היא פונציה פונקציה המוגדרת ב-<math>(x_0-R,x_0+R)</math>, כך שנגזרתה בקטע זה היא <math>f'(x)=\sum_{n=1}^\infty n a_n(x-x_0)^{n-1}</math>.
:* {{הערה|הכללה:}} בתנאים הללו, <math>f</math> גזירה אינסוף פעמים ו-<math>f^{(k)}(x)=\sum_{n=k}^\infty\frac{n!}{(n-k)!}a_n(x-x_0)^{n-k}</math> לכל <math>k\in\mathbb N\cup\{0\}</math>. יתרה מזאת, רדיוס ההתכנסות של הטורים הגזורים הוא <math>R</math>.
* יהי <math>f(x)=\sum_{n=0}^\infty a_n(x-x_0)^n</math> טור חזקות עם רדיוס התכנסות <math>R>0</math>. אזי לכל <math>n\in\mathbb N\cup\{0\}</math> מתקיים <math>a_n=\frac{f^{(n)}(x_0)}{n!}</math>, ז"א הטור הוא טור טיילור של <math>f</math> סביב <math>x_0</math>.
38
עריכות