מכינה למתמטיקה קיץ תשעב/תרגילים/4/פתרון 4

מתוך Math-Wiki
גרסה מ־19:01, 18 באוגוסט 2012 מאת Tomer Yogev (שיחה | תרומות) (תרגילים - אי שיוויונים)

(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)
קפיצה אל: ניווט, חיפוש

בכל התרגילים צריך לבדוק גם את המקרה ההתחלתי עבור n=1 אבל דילגתי על זה כי זה פשוט. בכולם אני מניח שהטענה נכונה עבור n ומוכיח שמכך נובע שהיא נכונה גם עבור n+1.

תרגילים - שיוויונים

  • 1^3+2^3+...+n^3=(1+2+...+n)^2

(1+2+...+n+(n+1))^2=(1+2+...+n)^2+2 \cdot (1+2+...+n)\cdot (n+1) + (n+1)^2

=(1+2+...+n)^2+n\cdot(n+1)\cdot(n+1)+(n+1)^2=(1+2+...+n)^2+(n+1)^3=1^3+2^3+...+n^3+(n+1)^3

השוויון הראשון נכון לפי הנוסחה (a+b)^2=a^2+2ab+b^2. השוויון השני נכון לפי סכום סדרה חשבונית. השוויון השלישי הוא כינוס איברים והשוויון האחרון נכון לפי הנחת האינדוקציה.


  • (n+1)^2+(n+2)^2+...+(2n)^2=\frac{n(2n+1)(7n+1)}{6}

(n+2)^2+...+(2n)^2+(2n+1)^2+(2n+2)^2 = (n+2)^2+...+(2n)^2+(2n+1)^2+(2n+2)^2+(n+1)^2-(n+1)^2

=(n+1)^2+(n+2)^2+...+(2n)^2+\Big((2n+1)^2+(2n+2)^2-(n+1)^2\Big)

=\frac{n(2n+1)(7n+1)}{6}+(7n^2+10n+4)=\frac{(n+1)(2n+3)(7n+8)}{6}

השוויון הראשון הוא הוספה והחסרה של אותו איבר. השני הוא שינוי סדר האיברים. השלישי נכון לפי הנחת האינדוקציה ופתיחת סוגריים. השוויון האחרון הוא לפי פתיחת סוגריים ופירוק לגורמים.


  • 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2n}=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}

1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2n}+\frac{1}{2n+1}-\frac{1}{2n+2} = \frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n} +\frac{1}{2n+1}-\frac{1}{2n+2}

=\frac{1}{n+2}+...+\frac{1}{2n}+\frac{1}{2n+1}+\Big(\frac{1}{n+1}-\frac{1}{2n+2}\Big)

=\frac{1}{n+2}+...+\frac{1}{2n}+\frac{1}{2n+1}+\frac{1}{2n+2}

השוויון הראשון נכון לפי הנחת האינדוקציה. השני הוא שינוי סדר האיברים. השלישי הוא פישוט שני המחוברים האחרונים


  • \frac{1}{3!}+\frac{5}{4!}+\frac{11}{5!}+...+\frac{n^2+n-1}{(n+2)!}=\frac{1}{2}-\frac{n+1}{(n+2)!}

\frac{1}{3!}+\frac{5}{4!}+\frac{11}{5!}+...+\frac{n^2+n-1}{(n+2)!}+\frac{(n+1)^2+(n+1)-1}{(n+3)!}=\frac{1}{2}-\frac{n+1}{(n+2)!}+\frac{n^2+3n+1}{(n+3)!}

=\frac{1}{2}-\frac{(n+1)(n+3)-(n^2+3n+1)}{(n+3)!}=\frac{1}{2}-\frac{n+2}{(n+3)!}

השוויון הראשון נכון לפי הנחת האידוקציה ופתיחת סוגריים. השני הוא מכנה משותף והשלישי הוא שוב פתיחת סוגריים במונה.


  • 1-4+7-10+...+(-1)^{n+1}(3n-2)=\frac{1}{4}\Big((-1)^{n+1}(6n-1)-1\Big)

1-4+7-10+...+(-1)^{n+1}(3n-2)-(-1)^{n+1}(3n+1)=\frac{1}{4}\Big((-1)^{n+1}(6n-1)-1\Big)-(-1)^{n+1}(3n+1)

=\frac{1}{4}\Big((-1)^{n+1}(6n-1)-1\Big)-\frac{1}{4}\Big((-1)^{n+1}(12n+4)\Big)

\frac{1}{4}\Big((-1)^{n+1}(6n-1-12n-4)-1\Big)=\frac{1}{4}\Big((-1)^{n+1}(-6n-5)-1\Big)=\frac{1}{4}\Big((-1)^{n+2}(6n+5)-1\Big)

השוויון הראשון נכון לפי הנחת האינדוקציה, השני לפי כפל וחילוק ב4, השלישי זה כינוס איברים וגם שאר השוויונים ברורים.


  • \frac{1^2}{1\cdot 3}+\frac{2^2}{3\cdot 5}+...+\frac{n^2}{(2n-1)(2n+1)}=\frac{n(n+1)}{2(2n+1)}

\frac{1^2}{1\cdot 3}+\frac{2^2}{3\cdot 5}+...+\frac{n^2}{(2n-1)(2n+1)}+\frac{(n+1)^2}{(2n+1)(2n+3)}=\frac{n(n+1)}{2(2n+1)}+\frac{(n+1)^2}{(2n+1)(2n+3)}

=\frac{n(n+1)(2n+3)+2(n+1)^2}{2(2n+1)(2n+3)}=\frac{(n+1)(2n^2+3n+2n+2)}{2(2n+1)(2n+3)}=\frac{(n+1)(n+2)}{2(2n+3}

הראשון לפי הנחת האינדוקציה, השני מכנה משותף, והאחרים פישוט וצמצום


  • \Big(1-\frac{1}{(n+1)^2}\Big)\Big(1-\frac{1}{(n+2)^2}\Big)\cdots \Big(1-\frac{1}{(2n)^2}\Big)=\frac{2n+1}{2n+2}

\Big(1-\frac{1}{(n+2)^2}\Big)\Big(1-\frac{1}{(n+3)^2}\Big)\cdots \Big(1-\frac{1}{(2n)^2}\Big)\Big(1-\frac{1}{(2n+1)^2}\Big)\Big(1-\frac{1}{(2n+2)^2}\Big)

=\frac{\Big(1-\frac{1}{(n+1)^2}\Big)\Big(1-\frac{1}{(n+2)^2}\Big)\Big(1-\frac{1}{(n+3)^2}\Big)\cdots \Big(1-\frac{1}{(2n)^2}\Big)}{\Big(1-\frac{1}{(n+1)^2}\Big)}\Big(1-\frac{1}{(2n+1)^2}\Big)\Big(1-\frac{1}{(2n+2)^2}\Big)

=\frac{\frac{2n+1}{2n+2}}{\Big(1-\frac{1}{(n+1)^2}\Big)}\Big(1-\frac{1}{(2n+1)^2}\Big)\Big(1-\frac{1}{(2n+2)^2}\Big)

=\frac{(n+1)^2}{n^2+2n}\cdot\frac{2n+1}{2n+2}\cdot\frac{4n^2+4n}{(2n+1)^2}\cdot\frac{4n^2+8n+3}{(2n+2)^2}=\frac{2n+3}{2n+4}

השוויון הראשון הוא כפל וחלוקה באותו גורם, השני הוא לפי הנחת האינדוקציה, וההמשך זה פישוט וצמצום

תרגילים - אי שיוויונים

  • \frac{1}{1\cdot 6}+\frac{1}{6\cdot 11} +...+\frac{1}{(5n-4)(5n+1)}<\frac{2n}{5n+1}

\frac{1}{1\cdot 6}+\frac{1}{6\cdot 11} +...+\frac{1}{(5n-4)(5n+1)}+\frac{1}{(5n+1)(5n+6)}<\frac{2n}{5n+1}+\frac{1}{(5n+1)(5n+6)}

=\frac{(2n)(5n+6)+1}{(5n+1)(5n+6)}=\frac{10n^2+12n+1}{(5n+1)(5n+6)}<\frac{10n^2+12n+2}{(5n+1)(5n+6)}=\frac{2n+2}{5n+6}


  • \frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}<\frac{n-1}{n}

\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}+\frac{1}{(n+1)^2}<\frac{n-1}{n}+\frac{1}{(n+1)^2}=\frac{n^3+n^2-1}{n(n+1)^2}<\frac{n^3+n^2}{n(n+1)^2}=\frac{n}{n+1}


  • 1^2+2^2+...+n^2<\frac{(n+1)^3}{3}

1^2+2^2+...+n^2+(n+1)^2<\frac{(n+1)^3}{3}+(n+1)^2=\frac{n^3+6n^2+9n+4}{3}<\frac{n^3+6n^2+12n+8}{3}=\frac{(n+2)^3}{3}


  • \frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}>\frac{13}{24}

\frac{1}{n+2}+\frac{1}{n+3}+...+\frac{1}{2n}+\frac{1}{2n+1}+\frac{1}{2n+2}=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}+\frac{1}{2n+1}+\frac{1}{2n+2}-\frac{1}{n+1}>\frac{13}{24}+\frac{1}{2n+1}+\frac{1}{2n+2}-\frac{1}{n+1}

=\frac{13}{24}+\frac{1}{2n+1}-\frac{1}{2n+2}>\frac{13}{24}


  • \frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{3n+1}>1

\frac{1}{n+2}+...+\frac{1}{3n+1}+\frac{1}{3n+2}+\frac{1}{3n+3}+\frac{1}{3n+4}=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{3n+1}+\frac{1}{3n+2}+\frac{1}{3n+3}+\frac{1}{3n+4}-\frac{1}{n+1}

>1+\frac{1}{3n+2}+\frac{1}{3n+3}+\frac{1}{3n+4}-\frac{1}{n+1}=1+\frac{2}{3(n+1)(3n+2)(3n+4)}>1