הבדלים בין גרסאות בדף "משפט בולצאנו-ויירשטראס"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
 
(2 גרסאות ביניים של אותו משתמש אינן מוצגות)
שורה 1: שורה 1:
==משפט בולצאנו ויירשטראס לסדרות==
+
==משפט בולצאנו-ויירשטראס לסדרות==
לכל סדרה חסומה יש תת סדרה מתכנסת
+
לכל סדרה חסומה יש תת-סדרה מתכנסת
  
 
==הוכחה==
 
==הוכחה==
ראשית, נזכר ב'''למה של קנטור'''. יהי <math>\{I_n\}</math> אוסף של קטעים סגורים <math>I_n=[a_n,b_n]</math> כך שכל אחד מוכל בקודמו (כלומר <math>a_n</math> מונוטונית לא יורדת, ו<math>b_n</math> מונוטונית לא עולה). עוד נניח כי אורך הקטעים שואף לאפס, כלומר <math>\lim_{n\rightarrow\infty}b_n-a_n =0</math>.
+
ראשית, נזכר ב'''למה של קנטור'''. יהי <math>\{I_n\}</math> אוסף של קטעים סגורים <math>I_n=[a_n,b_n]</math> כך שכל אחד מוכל בקודמו (כלומר <math>a_n</math> מונוטונית לא-יורדת, ו- <math>b_n</math> מונוטונית לא-עולה). עוד נניח כי אורך הקטעים שואף ל- <math>0</math> , כלומר <math>\lim\limits_{n\to\infty}\Big[b_n-a_n\Big]=0</math> .
  
אזי קיימת נקודה יחידה השייכת '''לכל''' הקטעים. (מתקיים באופן טבעי שנקודה זו שווה לגבול הסדרות <math>a_n,b_n</math>.)
+
אזי קיימת נקודה יחידה השייכת '''לכל''' הקטעים. (מתקיים באופן טבעי שנקודה זו שווה לגבול הסדרות <math>a_n,b_n</math>)
  
  
נביט כעת בסדרה חסומה <math>-M\leq a_n \leq M</math> (זכרו, הסדרה לא חייבת להיות בכל הקטע הזה, רק לא לצאת ממנו). כיוון שבסדרה ישנם אינסוף איברים, הקטע <math>I_1:=[-M,M]</math> מכיל אינסוף איברים מהסדרה.
+
נביט כעת בסדרה חסומה <math>-M\le a_n\le M</math> (זכרו, הסדרה לא חייבת להיות בכל הקטע הזה, רק לא לצאת ממנו). כיון שבסדרה ישנם אינסוף אברים, הקטע <math>I_1:=[-M,M]</math> מכיל אינסוף אברים מהסדרה.
  
נביט כעת בשני חצאי הקטע <math>[-M,0],[0,M]</math>. '''בהכרח אחד מהם לפחות מכיל אינסוף איברים מהסדרה''' (וזה עיקר הרעיון של ההוכחה). נסמן את חצי הקטע הזה ב <math>I_2</math>. נחצה את הקטע הזה לשניים, ונבחר חצי שמכיל אינסוף איברים.
+
נביט כעת בשני חצאי הקטע <math>[-M,0],[0,M]</math> . '''בהכרח אחד מהם לפחות מכיל אינסוף אברים מהסדרה''' (וזה עיקר הרעיון של ההוכחה). נסמן את חצי הקטע הזה <math>I_2</math> . נחצה את הקטע הזה לשניים, ונבחר חצי שמכיל אינסוף אברים.
  
אם כך, קיבלנו סדרה של קטעים <math>I_1\supseteq I_2 \supseteq \cdots</math> המקיימת את התכונות הבאות:
+
אם כך, קיבלנו סדרה של קטעים <math>I_1\supseteq I_2\supseteq\cdots</math> המקיימת את התכונות הבאות:
  
*כל קטע מכיל אינסוף איברים מהסדרה <math>a_n</math>
+
*כל קטע מכיל אינסוף אברים מהסדרה <math>a_n</math>
  
 
*כל קטע מוכל בקודמו
 
*כל קטע מוכל בקודמו
  
*אורך כל קטע הוא חצי קודמו. כיוון שאורך הקטע הראשון הינו 2M אורך הקטע <math>I_n</math> שווה ל<math>\frac{M}{2^{n-2}}</math>. ברור שאורך הקטעים שואף לאפס לכן.
+
*אורך כל קטע הוא חצי קודמו. כיון שאורך הקטע הראשון הנו <math>2M</math> אורך הקטע <math>I_n</math> שווה <math>\dfrac{M}{2^{n-2}}</math> . ברור שאורך הקטעים שואף ל-0
  
  
לפי הלמה של קנטור, מתקיים כי יש נקודה המוכל '''בכל''' הקטעים הללו, נקרא לה L. נוכיח כי L הינו גבול חלקי של <math>a_n</math> ובכך נסיים את ההוכחה (שכן ההגדרה של גבול חלקי הינו קיום תת סדרה השואפת אליו).
+
לפי הלמה של קנטור, מתקיים כי יש נקודה המוכל '''בכל''' הקטעים הללו, נקרא לה <math>L</math> . נוכיח כי <math>L</math> הנה גבול חלקי של <math>a_n</math> ובכך נסיים את ההוכחה (שכן ההגדרה של גבול חלקי הנו קיום תת-סדרה השואפת אליו).
  
  
*יהי אפסילון גדול מאפס, רוצים להוכיח כי בסביבת אפסילון של L ישנם אינסוף איברים מהסדרה.  
+
*יהי <math>\varepsilon>0</math> . רוצים להוכיח כי בסביבת <math>\varepsilon</math> של <math>L</math> ישנם אינסוף אברים מהסדרה.
*כיוון שאורך הקטעים שבנינו שואפים לאפס, יש קטע שאורכו קטן מאפסילון חלקי 2.  
+
*כיון שאורך הקטעים שבנינו שואפים ל-0, יש קטע שאורכו קטן מ- <math>\dfrac{\varepsilon}{2}</math> .
*לפי ההגדרה של L מהלמה של קנטור, L מוכל בכל הקטעים שבנינו ובפרט בקטע הקטן הזה.  
+
*לפי ההגדרה של <math>L</math> מהלמה של קנטור, <math>L</math> מוכל בכל הקטעים שבנינו ובפרט בקטע הקטן הזה.
*לכן בוודאי הקטע הקטן מוכל בסביבת אפסילון של L.
+
*לכן בודאי הקטע הקטן מוכל בסביבת <math>\varepsilon</math> של <math>L</math> .
*אבל אחת התכונות של הקטעים שבנינו היא שהם מכילים אינסוף איברים מהסדרה ולכן קיימים אינסוף איברים מהסדרה בסביבת אפסילון של L.
+
*אבל אחת התכונות של הקטעים שבנינו היא שהם מכילים אינסוף אברים מהסדרה ולכן קיימים אינסוף אברים מהסדרה בסביבת <math>\varepsilon</math> של <math>L</math> .
 
+
<math>\blacksquare</math>
כפי שרצינו להוכיח.
+
  
 
[[קטגוריה:אינפי]]
 
[[קטגוריה:אינפי]]

גרסה אחרונה מ־06:54, 19 ביוני 2017

משפט בולצאנו-ויירשטראס לסדרות

לכל סדרה חסומה יש תת-סדרה מתכנסת

הוכחה

ראשית, נזכר בלמה של קנטור. יהי \{I_n\} אוסף של קטעים סגורים I_n=[a_n,b_n] כך שכל אחד מוכל בקודמו (כלומר a_n מונוטונית לא-יורדת, ו- b_n מונוטונית לא-עולה). עוד נניח כי אורך הקטעים שואף ל- 0 , כלומר \lim\limits_{n\to\infty}\Big[b_n-a_n\Big]=0 .

אזי קיימת נקודה יחידה השייכת לכל הקטעים. (מתקיים באופן טבעי שנקודה זו שווה לגבול הסדרות a_n,b_n)


נביט כעת בסדרה חסומה -M\le a_n\le M (זכרו, הסדרה לא חייבת להיות בכל הקטע הזה, רק לא לצאת ממנו). כיון שבסדרה ישנם אינסוף אברים, הקטע I_1:=[-M,M] מכיל אינסוף אברים מהסדרה.

נביט כעת בשני חצאי הקטע [-M,0],[0,M] . בהכרח אחד מהם לפחות מכיל אינסוף אברים מהסדרה (וזה עיקר הרעיון של ההוכחה). נסמן את חצי הקטע הזה I_2 . נחצה את הקטע הזה לשניים, ונבחר חצי שמכיל אינסוף אברים.

אם כך, קיבלנו סדרה של קטעים I_1\supseteq I_2\supseteq\cdots המקיימת את התכונות הבאות:

  • כל קטע מכיל אינסוף אברים מהסדרה a_n
  • כל קטע מוכל בקודמו
  • אורך כל קטע הוא חצי קודמו. כיון שאורך הקטע הראשון הנו 2M אורך הקטע I_n שווה \dfrac{M}{2^{n-2}} . ברור שאורך הקטעים שואף ל-0


לפי הלמה של קנטור, מתקיים כי יש נקודה המוכל בכל הקטעים הללו, נקרא לה L . נוכיח כי L הנה גבול חלקי של a_n ובכך נסיים את ההוכחה (שכן ההגדרה של גבול חלקי הנו קיום תת-סדרה השואפת אליו).


  • יהי \varepsilon>0 . רוצים להוכיח כי בסביבת \varepsilon של L ישנם אינסוף אברים מהסדרה.
  • כיון שאורך הקטעים שבנינו שואפים ל-0, יש קטע שאורכו קטן מ- \dfrac{\varepsilon}{2} .
  • לפי ההגדרה של L מהלמה של קנטור, L מוכל בכל הקטעים שבנינו ובפרט בקטע הקטן הזה.
  • לכן בודאי הקטע הקטן מוכל בסביבת \varepsilon של L .
  • אבל אחת התכונות של הקטעים שבנינו היא שהם מכילים אינסוף אברים מהסדרה ולכן קיימים אינסוף אברים מהסדרה בסביבת \varepsilon של L .

\blacksquare