שינויים

משתמש:אור שחף/133 - הרצאה/10.4.11

נוספו 17 בתים, 14:27, 13 ביולי 2011
/* פתרון */
</li><li>ידוע לנו ש-<math>\sum_{n=1}^\infty\frac1{n^2}=\frac{\pi^2}6</math>. אם נקח, למשל, <math>\sum_{n=1}^{10^6}\frac1{n^2}</math>, מהו סדר הגודל של השארית R?
====פתרון====
נחסום את השארית מלעיל ומלרע בעזרת המסקנה למשפט 6. נגדיר <math>f(x)=\frac1{x^2}</math> אזי <math>R=\frac{\pi^2}6-\sum_{n=1}^{10^6}\frac1{n^2}=\sum_{n=10^6+1}^\infty\frac1{n^2}</math>. מתקיים <math>\sum_{n=10^6+1}^\inftyf(n)\le\int\limits_{10^6}^\infty f=\left[\frac{-1}x\right]_{x=10^6}^\infty=10^{-6}</math>. כמו כן <math>\int\limits_{10^6+1}^\infty f\le\sum_{n=10^6+1}^\infty f(n)</math> ולכן <math>\sum_{n=10^6+1}^\infty f(n)\ge\left[\frac{-1}x\right]_{x=10^6+1}^\infty=\frac1{10^6+1}</math>.
לסיכום, השארית מקיימת <math>\frac1{10^6+1}\le R\le\frac1{10^6}</math>.
'''הגדרה:''' תהי f מוגדרת בקטע <math>[a,\infty)</math>. נאמר ש-f מקיימת את תנאי קושי עבור <math>x\to\infty</math> אם לכל <math>\varepsilon>0</math> קיים <math>x_0>a</math> כך שאם <math>x_2\ge x_1>x_0</math> אז <math>|f(x_2)-f(x_1)|<\varepsilon</math>.
 
==משפט 7==
תהי f מוגדרת בקטע <math>[a,\infty)</math>. <math>\lim_{x\to\infty} f(x)</math> קיים ממש אם"ם הוא מקיים את תנאי קושי בקטע.