שינויים

קפיצה אל: ניווט, חיפוש

משתמש:אור שחף/133 - הרצאה/20.2.11

הוסרו 184 בתים, 14:17, 12 באוגוסט 2013
/* הקדמה - הגדרות */
===דוגמת חישוב (ידני) של שטח שמתחת לגרף===
[[קובץ:השטח מתחת ל-x בריבוע לפי מלבנים.png|300px|ממוזער|ימין|הגרף של <math>y=x^2</math> והמלבנים החוסמים (עם גבול ירוק) והחסומים (בצבע כחול).]]
נתון הגרף של <math>y=x<sup>^2</supmath> ונרצה לחשב את השטח שמתחת לו בקטע <math>[0,1]</math>.
נחלק את הקטע:
{{left|<math>0=x_0<x_1<x_2<\dots<x_n=1</math>}}
כך שבאופן כללי <math>x_k=k/n</math> (בגרף מוצג המקרה הפרטי <math>n=4</math>).
מעל כל תת קטע <math>[x_{k-1},x_k]</math> נבנה "מלבן חוסם" שגובהו <math>\left({k\over n}\right)^2=x_k^2</math>. ביחד מלבנים אלו יוצרים שטח כל המלבנים הללו הוא "שטח חוסם " {{left|<math>\overline S:=\sum_{k=1}^n\frac1n\left({k\over n}\right)^2=\frac1{n^3}\sum_{k=1}^nk^2=\frac{n(n+1)(2n+1)}{6n^3}</math>}}
כמו כן, מעל כל תת קטע <math>[x_{k-1},x_k]</math> נבנה "מלבן חסום" שגובהו <math>\left({k-1\over n}\right)^2=x_{k-1}^2</math>. ביחד מלבנים אלה מהווים "שטח חסום " {{left|<math>\underline S:=\frac1n\sum_{k=1}^n\left({k-1\over n}\right)^2=\frac1{n^3}\sum_{k=1}^n(k-1)^2=\frac1{n^3}\sum_{k=1}^{n-1}k^2=\frac{(n-1)n(2n-1)}{6n^3}</math>}}
כעת , אם A מציין את השטח שמתחת לגרף , בוודאי ש-<math>\underline S\le A\le\overline S</math>, ז"א <math>\frac{(n-1)(2n-1)}{6n^2}\le A\le\frac{(n+1)(2n+1)}{6n^2}</math>. הדבר נכון לכל <math>n\in\mathbb N</math> ולכן נוכל להשאיף את <math>n\to\infty</math> ולקבל
<math>\frac13\le A\le\frac13</math>, לכן <math>A=\frac13</math>. {{משל}}
'''הגדרה:''' תהי <math>f(x)</math> מוגדרת בקטע I. נאמר שהפונקציה <math>F(x)</math> קדומה ל-f ב-I אם <math>\forall x\in I:\ F'(x)=f(x)</math>.
''דוגמה:'' אם <math>f(x)=x^2</math> אז <math>F(x)=\frac{x^3}3</math>.
==משפט 0==
אם <math>F(x)</math> ו-<math>G(x)</math> קדומות ל-<math>f(x)</math> בקטע I אז קיים קבוע c כך ש-<math>F(x)=G(x)+c</math>
===הוכחה===
נגדיר <math>H(x)=F(x)-G(x)</math> ולכן <math>\forall x\in I:\ H'(x)=F'(x)-G'(x)=f(x)-f(x)=0</math>. לפי תוצאה ממשפט לגראנג' מכאן ש-H היא פונקציה קבועה ולכן יש קבוע c כך ש-<math>F(x)-G(x)=H(x)=c\implies F(x)=G(x)+c</math>. {{משל}}
----
תהי <math>f(x)\ge0</math> מוגדרת ורציפה ב-<math>[a,b]</math>.
# לכל <math>x\in[a,b]</math> נגדיר <math>A(x)=\int\limits_a^x f</math> אזי <math>\forall x\in[a,b]:\ f(x)=A'(x)</math>.
# אם <math>F(x)</math> קדומה ל-<math>f(x)</math> ב-<math>[a,b]</math> אז <math>\int\limits_a^b f=F(b)-F(a)</math>.
===הוכחה===
[[קובץ:הוכחה אינטואיטיבית למשפט היסודי של החשבון האינפיניטסימלי.png|ימין|ממוזער|350px]]
# יהי x נתון. לפי ההגדרה <math>A'(x)=\lim_{\Delta x\to0}\frac{A(x+\Delta x)-A(x)}{\Delta x}</math>. בגרף: <math>=A(x+\Delta x)-A(x)</math> השטח של החלק הירוק, ו-<math>=\Delta x</math> בסיס החלק הירוק, . לפיכך <math>=\frac{A(x+\Delta x)-A(x)}{\Delta x}</math> הגובה הממוצע של החלק הפונקציה בחלק הירוק. לכן <math>=A'(x)</math> הוא הגובה הממוצע של החלק הירוק (כאשר <math>\Delta x\to0</math>, כלומר ) <math>f(x)=</math>. {{משל}}# נתונה פונקציה קדומה <math>F(x)</math>. מחלק 1 ידוע גם ש-<math>Aפונקציה קדומה (xשל f)</math> פונקציה קדומה. לפי משפט 0 יש קבוע c כך ש-<math>F(x)=A(x)+c</math>. לכן ולכן <math>F(b)-F(a)=A(b)+c-(\underbrace{A(a)}_{=0}+c)=A(b)=\int\limits_a^b f</math>. {{משל}}
=האינטגרל לפי דרבו=
==הקדמה - הגדרות==
[[קובץ:הגדרת הערכים באינטגרל לפי דרבו.png|שמאל|500px|ממוזער]]תהי <math>f(x)</math> מוגדרת וחסומה ע"י <math>m:=\inf f(x)</math> ו- <math>M:=\sup f(x)</math> בקטע <math>[a,b]</math>. נגדיר את התנודה של f ע"י <math>\Omega:=M-m</math>. כעת נגדיר חלוקה P של <math>[a,b]</math>:כקבוצה <math>\{{left|x_0,x_1,\dots,x_n\}</math> המקיימת: <math>a=x_0<x_1<\dots<x_n=b</math>}}. עוד נגדיר לכל <math>k</math> את אורך תת קטע מספר k להיות <math>\Delta x_k:=x_k-x_{k-1}</math> ואת הפרמטר של P להיות <math>\lambda(P):=\max_{k=1}^n\Delta x_k</math>.
לכל k כך ש-<math>1\le k\le n</math> נגדיר גם <math>M_k:=\sup\{f(x):\ x_{k-1}\le x\le x_k\}</math> וכן <math>m_k:=\inf\{f(x):\ x_{k-1}\le x\le x_k\}</math>. בהתאם לכך נגדיר:* שטח חוסם - הסכום העליון: <math>\overline S(f,P):=\sum_{k=1}^n M_k\Delta x_k</math>* שטח חסום - הסכום התחתון: <math>\underline S(Af,P):=\sum_{k=1}^n m_k\Delta x_k</math>
==משפט 1==
{{=|l=m(b-a)
|r=\sum_{k=1}^n m\Delta x_k
|c=<math>=\sum_{k=1}^n\Delta x_k</math> = סכום כל הרווחים בין n נקודות החלוקה = <math>b-a=</math>, לכן:
}}
{{=|r=\sum_{k=1}^n m_k\Delta x_k=\underline S(f,P)
==הגדרת האינטגרל לפי דרבו==
תהי <math>f(x)</math> מוגדרת וחסומה ב-<math>[a,b]</math>. נאמר ש-f אינטגרבילית לפי דרבו ב-<math>[a,b]</math> אם <math>\underline\int_a^b f=\overline{\int}_a^b f</math> ואם הם שווים אז נגדיר <math>\int\limits_a^b f</math> להיות הערך המשותף של <math>\underline\int f</math> ו-<math>\overline{\int} f</math>.
===דוגמה===
נקח חלוקה כלשהי ל-<math>[a,b]</math>: <math>a=x_0<x_1<\dots<x_n=b</math>.
לכל k מתקיים <math>M_k=\sup\{f(x):\ x_{k-1}\le x\le x_k\}=1</math> וכן <math>m_k=\inf\{f(x):\ x_{k-1}\le x\le x_k\}=0</math>. לכן <math>\overline S(f,P)=\sum_{k=1}^n M_k\Delta x_k=\sum_{k=1}^n 1\Delta x_k=b-a</math> ואילו <math>\underline S(f,P)=\sum_{k=1}^n m_k\Delta x_k=\sum_{k=1}^n 0\Delta x_k=0</math>. מכאן <math>\underline\int_a^b f=\sup_P \underline S(f,P)=0</math> ו-<math>\overline{\int}_a^b f=\inf_P \overline S(f,P)=b-a</math>. הם לא , וכייוון שאינם שווים ולכן f לא אינה אינטגרבילית. {{משל}}
==משפט 2==
תהי <math>f(x)</math> מוגדרת וחסומה ב-<math>[a,b]</math>. , תהי P חלוקה של <math>[a,b]</math> ו-Q עידון של P ע"י הוספת r נקודות. אז אזי
{{left|
<math>0\le\overline S(f,P)-\overline S(f,Q)\le r\lambda(P)\Omega</math>
לפי ההגדרות <math>M_i\ge M_i^+,M_i^-</math> ולפיכך {{left|<math>\begin{align}\overline S(f,P)-\overline S(f,Q)&\ge M_i\Delta x_i-\Big(M_i(x_i'-x_{i-1})+M_i(x_i-x_i')\Big)\\&=M_i\Big(\Delta x_i-(x_i'-x_{i-1}+x_i-x_i')\Big)\\&=M_i\Big(\Delta x_i-(x_i-x_{i-1})\Big)\\&=0\end{align}</math>}}
<span id="continue"><!--נא לא למחוק span זה--></span>{{הערההמשך סיכום|את ההמשך עשינו ב[[משתמש:אור שחף/133 - הרצאה/תאריך=22.2.11|הרצאה שאחריה]]:}}
כמו כן,