שינויים

קפיצה אל: ניווט, חיפוש

משתמש:אור שחף/133 - הרצאה/20.2.11

נוספו 10,857 בתים, 14:17, 12 באוגוסט 2013
/* הקדמה - הגדרות */
בדיקה{{כותרת נושא|אינטגרציה|נושא ראשון}}'''הערה:''' האינטגרל הוא '''לא''' שטח שמתחת לגרף. למעשה, השטח מתחת לגרף מוגדר לפי האינטגרל.===דוגמת חישוב (ידני) של שטח שמתחת לגרף===[[קובץ:השטח מתחת ל-x בריבוע לפי מלבנים.png|300px|ממוזער|ימין|הגרף של <math>y=x^2</math> והמלבנים החוסמים (עם גבול ירוק) והחסומים (בצבע כחול).]]נתון הגרף של <math>y=x^2</math> ונרצה לחשב את השטח שמתחת לו בקטע <math>[0,1]</math>.נחלק את הקטע:{{left|<math>0=x_0<x_1<x_2<\dots<x_n=1</math>}}כך שבאופן כללי <math>x_k=k/n</math> (בגרף מוצג המקרה הפרטי <math>n=4</math>). מעל כל תת קטע <math>[x_{k-1},x_k]</math> נבנה "מלבן חוסם" שגובהו <math>\left({k\over n}\right)^2=x_k^2</math>. שטח כל המלבנים הללו הוא "שטח חוסם" {{left|<math>\overline S:=\sum_{k=1}^n\frac1n\left({k\over n}\right)^2=\frac1{n^3}\sum_{k=1}^nk^2=\frac{n(n+1)(2n+1)}{6n^3}</math>}} כמו כן, מעל כל תת קטע <math>[x_{k-1},x_k]</math> נבנה "מלבן חסום" שגובהו <math>\left({k-1\over n}\right)^2=x_{k-1}^2</math>. ביחד מלבנים אלה מהווים "שטח חסום" {{left|<math>\underline S:=\frac1n\sum_{k=1}^n\left({k-1\over n}\right)^2=\frac1{n^3}\sum_{k=1}^n(k-1)^2=\frac1{n^3}\sum_{k=1}^{n-1}k^2=\frac{(n-1)n(2n-1)}{6n^3}</math>}} כעת, אם A מציין את השטח שמתחת לגרף, בוודאי ש-<math>\underline S\le A\le\overline S</math>, ז"א <math>\frac{(n-1)(2n-1)}{6n^2}\le A\le\frac{(n+1)(2n+1)}{6n^2}</math>. הדבר נכון לכל <math>n\in\mathbb N</math> ולכן נוכל להשאיף את <math>n\to\infty</math> ולקבל <math>\frac13\le A\le\frac13</math>, לכן <math>A=\frac13</math>. {{משל}}  ----  '''הגדרה:''' תהי f מוגדרת בקטע I. נאמר שהפונקציה F קדומה ל-f ב-I אם <math>\forall x\in I:\ F'(x)=f(x)</math>. ''דוגמה:'' אם <math>f(x)=x^2</math> אז <math>F(x)=\frac{x^3}3</math>. ==משפט 0==אם F ו-G קדומות ל-f בקטע I אז קיים קבוע c כך ש-<math>F(x)=G(x)+c</math> ===הוכחה===נגדיר <math>H(x)=F(x)-G(x)</math> ולכן <math>\forall x\in I:\ H'(x)=F'(x)-G'(x)=f(x)-f(x)=0</math>. מכאן ש-H היא פונקציה קבועה ולכן יש קבוע c כך ש-<math>F(x)-G(x)=H(x)=c\implies F(x)=G(x)+c</math>. {{משל}} ---- '''הגדרה אינטואיטיבית:''' תהי <math>f(x)\ge0</math> רציפה בקטע <math>[a,b]</math>. נסמן ב-<math>\int\limits_a^b f</math> את השטח שמתחת לגרף. ==המשפט היסודי של חשבון אינטגרלי {{הערה|(בצורה אינטואיטיבית)}}==תהי <math>f(x)\ge0</math> מוגדרת ורציפה ב-<math>[a,b]</math>.# לכל <math>x\in[a,b]</math> נגדיר <math>A(x)=\int\limits_a^x f</math> אזי <math>\forall x\in[a,b]:\ f(x)=A'(x)</math>.# אם F קדומה ל-f ב-<math>[a,b]</math> אז <math>\int\limits_a^b f=F(b)-F(a)</math>. ===הוכחה===[[קובץ:הוכחה אינטואיטיבית למשפט היסודי של החשבון האינפיניטסימלי.png|ימין|ממוזער|350px]]# יהי x נתון. לפי ההגדרה <math>A'(x)=\lim_{\Delta x\to0}\frac{A(x+\Delta x)-A(x)}{\Delta x}</math>. בגרף: <math>=A(x+\Delta x)-A(x)</math> השטח של החלק הירוק ו-<math>=\Delta x</math> בסיס החלק הירוק. לפיכך <math>=\frac{A(x+\Delta x)-A(x)}{\Delta x}</math> הגובה הממוצע של הפונקציה בחלק הירוק. לכן <math>=A'(x)</math> הגובה הממוצע של החלק הירוק (כאשר <math>\Delta x\to0</math>) <math>f(x)=</math>. {{משל}}# נתונה פונקציה קדומה F. מחלק 1 ידוע גם ש-A פונקציה קדומה (של f). לפי משפט 0 יש קבוע c כך ש-<math>F(x)=A(x)+c</math> ולכן <math>F(b)-F(a)=A(b)+c-(\underbrace{A(a)}_{=0}+c)=A(b)=\int\limits_a^b f</math>. {{משל}} =האינטגרל לפי דרבו===הקדמה - הגדרות==[[קובץ:הגדרת הערכים באינטגרל לפי דרבו.png|שמאל|500px|ממוזער]]תהי f מוגדרת וחסומה ע"י <math>m:=\inf f</math> ו- <math>M:=\sup f</math> בקטע <math>[a,b]</math>. נגדיר את התנודה של f ע"י <math>\Omega:=M-m</math>. כעת נגדיר חלוקה P של <math>[a,b]</math> כקבוצה <math>\{x_0,x_1,\dots,x_n\}</math> המקיימת: <math>a=x_0<x_1<\dots<x_n=b</math>. עוד נגדיר לכל k את אורך תת קטע מספר k להיות <math>\Delta x_k:=x_k-x_{k-1}</math> ואת הפרמטר של P להיות <math>\lambda(P):=\max_{k=1}^n\Delta x_k</math>. לכל k כך ש-<math>1\le k\le n</math> נגדיר גם <math>M_k:=\sup\{f(x):\ x_{k-1}\le x\le x_k\}</math> וכן <math>m_k:=\inf\{f(x):\ x_{k-1}\le x\le x_k\}</math>. בהתאם לכך נגדיר:* שטח חוסם - הסכום העליון: <math>\overline S(f,P):=\sum_{k=1}^n M_k\Delta x_k</math>* שטח חסום - הסכום התחתון: <math>\underline S(f,P):=\sum_{k=1}^n m_k\Delta x_k</math> ==משפט 1==בסימונים הנ"ל, עבור כל חלוקה P מתקיים <math>m(b-a)\le\underline S(f,P)\le\overline S(f,P)\le M(b-a)</math>. ===הוכחה==={|{{=|l=m(b-a) |r=\sum_{k=1}^n m\Delta x_k |c=<math>=\sum_{k=1}^n\Delta x_k</math> סכום כל הרווחים בין n נקודות החלוקה <math>b-a=</math>, לכן:}}{{=|r=\sum_{k=1}^n m_k\Delta x_k=\underline S(f,P) |o=\le |c=לכל k מתקיים <math>m\le m_k</math>.}}{{=|r=\sum_{k=1}^n M_k \Delta x_k=\overline S(f,P) |o=\le}}{{=|r=\sum_{k=1}^n M\Delta x_k |o=\le}}{{=|r=M(b-a)}}|}{{משל}} נשים לב כי לפי משפט 1 המספרים <math>\overline S(f,P),\underline S(f,P)</math> חסומים מלעיל ומלרע באופן ב"ת (בלתי תלוי) ב-P (אבל בוודאי תלוי ב-f). לכן מוגדרים היטב ה"אינטגרל העליון" <math>\overline{\int}_a^b f:=\inf_P \overline S(f,P)</math> ו"האינטגרל התחתון" <math>\underline\int_a^b f:=\sup_P \underline S(f,P)</math>. ==הגדרת האינטגרל לפי דרבו==תהי f מוגדרת וחסומה ב-<math>[a,b]</math>. נאמר ש-f אינטגרבילית לפי דרבו ב-<math>[a,b]</math> אם <math>\underline\int_a^b f=\overline{\int}_a^b f</math> ואם הם שווים אז נגדיר <math>\int\limits_a^b f</math> להיות הערך המשותף של <math>\underline\int f</math> ו-<math>\overline{\int} f</math>. ===דוגמה===בקטע <math>[a,b]</math> כלשהו נגדיר את פונקצית דיריכלה <math>D(x)=\begin{cases}1&x\in\mathbb Q\\0&x\not\in\mathbb Q\end{cases}</math>.נקח חלוקה כלשהי ל-<math>[a,b]</math>: <math>a=x_0<x_1<\dots<x_n=b</math>. לכל k מתקיים <math>M_k=\sup\{f(x):\ x_{k-1}\le x\le x_k\}=1</math> וכן <math>m_k=\inf\{f(x):\ x_{k-1}\le x\le x_k\}=0</math>. לכן <math>\overline S(f,P)=\sum_{k=1}^n M_k\Delta x_k=\sum_{k=1}^n 1\Delta x_k=b-a</math> ואילו <math>\underline S(f,P)=\sum_{k=1}^n m_k\Delta x_k=\sum_{k=1}^n 0\Delta x_k=0</math>. מכאן <math>\underline\int_a^b f=\sup_P \underline S(f,P)=0</math> ו-<math>\overline{\int}_a^b f=\inf_P \overline S(f,P)=b-a</math>, וכייוון שאינם שווים f אינה אינטגרבילית. {{משל}}  ----  '''הגדרה:''' תהי P חלוקה של קטע <math>[a,b]</math>. חלוקה Q של <math>[a,b]</math> נקראת עידון או העדנה של P אם Q מכילה את כל נקודות החלוקה של P ועוד נקודות. ==משפט 2==תהי f מוגדרת וחסומה ב-<math>[a,b]</math>, תהי P חלוקה של <math>[a,b]</math> ו-Q עידון של P ע"י הוספת r נקודות. אזי {{left|<math>0\le\overline S(f,P)-\overline S(f,Q)\le r\lambda(P)\Omega</math> <math>0\le\underline S(f,Q)-\underline S(f,P)\le r\lambda(P)\Omega</math>}}(נזכיר ש-<math>\lambda(P)=\max_{1\le k\le n}\Delta x_k</math> ו-<math>\Omega=\sup_{x\in[a,b]} f(x)-\inf_{x\in[a,b]} f(x)</math>) כלומר, הסכום העליון יורד והסכום התחתון עולה ע"י עידון אבל השינוי בהם קטן מ-<math>r\lambda(P)\Omega</math>. ===הוכחה===מקרה ראשון: <math>r=1</math>. ז"א Q מתקבלת מ-P ע"י הוספת נקודה אחת <math>x_i'</math> כך ש-<math>x_{i-1}<x_i'<x_i</math> עבור i כלשהו. בהתאם לכך נגדיר <math>M_i^-:=\sup\{f(x):\ x_{i-1}\le x\le x_i'\}</math> ו-<math>M_i^+:=\sup\{f(x):\ x_i'\le x\le x_i\}</math>.כמו כן, לא שינינו כל תת קטע <math>[x_{k-1},x_k]</math> עבור <math>k\not=i</math> כלשהו. לכן <math>\overline S(f,P)-\overline S(f,Q)=M_i\Delta x_i-\Big(M_i^-(x_i'-x_{i-1})+M_i^+(x_i-x_i')\Big)</math> לפי ההגדרות <math>M_i\ge M_i^+,M_i^-</math> ולפיכך {{left|<math>\begin{align}\overline S(f,P)-\overline S(f,Q)&\ge M_i\Delta x_i-\Big(M_i(x_i'-x_{i-1})+M_i(x_i-x_i')\Big)\\&=M_i\Big(\Delta x_i-(x_i'-x_{i-1}+x_i-x_i')\Big)\\&=M_i\Big(\Delta x_i-(x_i-x_{i-1})\Big)\\&=0\end{align}</math>}} {{המשך סיכום|תאריך=22.2.11}} כמו כן,{{left|<math>\begin{align}\overline S(f,P)-\overline S(f,Q)&\le M_i(x_i-x_{i-1})-m_i(x_i-x_{i-1})\\&=(M_i-m_i)(x_i-x_{i-1})\\&\le\Omega(x_i-x_{i-1})\\&\le\underbrace{r}_{=1}\lambda(P)\Omega\end{align}</math>}} מקרה כללי: Q מתקבלת מ-P ע"י הוספת r נקודות. נוסיף אותן אחת אחת. הסכום העליון יורד, אבל לא יותר מאשר <math>\Omega\lambda(P)</math> בכל אחת מ-r המפעמים. לכן מיד נסיק <math>0\le\overline S(f,P)-\overline S(f,Q)\le r\Omega\lambda(P)</math>. ההוכחה לסכום תחתון דומה. {{משל}} ===מסקנה 1===נקח f כנ"ל ונניח ש-P ו-Q הן שתי חלוקות כלשהן של <math>[a,b]</math>. אזי <math>\underline S(f,P)\le\overline S(f,Q)</math>.====הוכחה====נבנה עידון משותף, ז"א <math>R=P\cup Q</math>. לפי משפט 2 מתקיים <math>\underline S(f,P)\le\underline S(f,R)\le \overline S(f,R)\le\overline S(f,Q)</math>. {{משל}} ===מסקנה 2===עבור f כנ"ל מתקיים <math>\underline\int_a^b f\le\overline{\int}_a^b f</math>.====הוכחה====מסקנה 1 אומרת שלכל שתי חלוקות P,Q של <math>[a,b]</math> מתקיים <math>\underline S(f,P)\le\overline S(f,Q)</math> ולכן <math>\sup_P\underline S(f,P)\le\inf_Q\overline S(f,Q)</math>. כמו כן, לפי ההגדרה <math>\underline\int_a^b f=\sup_Q\underline S(f,Q)</math> ו-<math>\inf_P\overline S(f,P)=\overline{\int}_a^b f</math>. {{משל}}