שינויים

קפיצה אל: ניווט, חיפוש

משתמש:אור שחף/133 - הרצאה/24.5.11

הוסרו 142 בתים, 20:50, 29 ביולי 2012
# יהי <math>x\in(x_0-R,x_0+R)</math> כרצונינו ונבחר r המקיים <math>|x-x_0|<r<R</math>. לפי משפט 1, סעיף 3, הטור מתכנס במ"ש ב-<math>[x_0-r,x_0+r]</math>. כמו כן, טור חזקות הוא סכום של פונקציות רציפות, ולכן f רציפה בקטע <math>[x_0-r,x_0+r]</math> ובפרט בנקודה x. {{משל}}
# הוכחנו בעבר כי ניתן לגזור טור איבר-איבר אם הוא מתכנס בנקודה אחת ואם הטור הגזור מתכנס במ"ש. התכנסות הטור נתונה בקטע <math>(x_0-R,x_0+R)</math> והטור הגזור הוא <math>\sum_{n=1}^\infty na_n(x-x_0)^{n-1}</math>, לכן צריך רק להוכיח שהטור הגזור מתכנס במ"ש. תחילה נקבע את רדיוס ההתכנסות שלו: נסמן ב-S את רדיוס ההתכנסות של הטור הגזור ולכן <math>\frac1S=\overline{\lim_{n\to\infty}}\sqrt[n]{n|a_n|}=\overline{\lim_{n\to\infty}}\sqrt[n]n\sqrt[n]{|a_n|}=\overline{\lim_{n\to\infty}}\sqrt[n]{|a_n|}=\frac1R</math>, כלומר <math>R=S</math>. נובע (לפי סעיף 1) שהטור הגזור מתכנס במ"ש ב-<math>(x_0-R,x_0+R)</math> ולכן מתקיימים התנאים כדי להוכיח שהגזירה הנ"ל אכן היתה מוצדקת. {{משל}}
<span id="continue"><!--נא לא למחוק span זה--></span>{{הערההמשך סיכום|את ההמשך עשינו ב[[משתמש:אור שחף/133 - הרצאה/תאריך=29.5.11|הרצאה שאחריה]]:}}
<ol start="3">
<li>נבחר x מסויים בקטע <math>(x_0-R,x_0+R)</math> ונסמן <math>r=|x-x_0|</math>. עפ"י משפט 1, סעיף 3, ידוע שהטור שלנו מתכנס במ"ש בקטע בין <math>x_0</math> ל-x ולכן (לפי משפט 9 בפרק הקודם) מותר לבצע אינטגרציה איבר-איבר בקטע זה. כעת <math>\int\limits_{x_0}^x f=\sum_{n=0}^\infty\int\limits_{x_0}^x a_n(t-x_0)^n\mathrm dt=\sum_{n=0}^\infty \frac{a_n}{n+1}(x-x_0)^{n+1}</math> ולכן נותר למצוא רדיוס התכנסות. במילא נגזרת הטור החדש היא הטור המקורי, ולכן (מסעיף 2) יש להם אותו רדיוס התכנסות. {{משל}}
</li>
</ol>