שינויים

קפיצה אל: ניווט, חיפוש

משתמש:אור שחף/133 - הרצאה/27.3.11

אין שינוי בגודל, 15:49, 12 במאי 2011
/* מבוא לאינטגרציה נומרית */
=מבוא לאינטגרציה נומרית=
נביא כאן 4 שיטות לקירוב של אינטגרל מסוים:
# אינטגרציה בעזרת פיתוח טיילור. לדוגמה, נחשב <math>\int\limits_0^1 e^{x^2}\mathrm dx</math> בדיוק של <math>10^{-6}</math>: כבר למדנו פיתוח טיילור לפונקציה <math>e^t</math>: <math>e^t=1+t+\frac{t^2}{2!}+\frac{t^3}{3!}+\dots+\frac{t^n}{n!}+R_n(t)</math> כאשר <math>R_n(t)=\frac{f^{(n+1)}(c)t^{n+1}}{(n+1)!}=\frac{e^ct^{n+1}}{(n+1)!}</math> לאיזה c בין 0 ל-t. נציב <math>t=x^2</math>: <math>e^{x^2}=1+x^2+\frac{x^4}{2!}+\frac{x^6}{3!}+\dots+\frac{x^{2n}}{n!}+R_n\left(x^2\right)</math>. לכן <math>\int\limits_0^1 e^{x^2}\mathrm dx=\int\limits_0^1 P_n\left(x^2\right)\mathrm dx+\int\limits_0^1 R_n\left(x^2\right)\mathrm dx</math>. אנו זקוקים ל-n כך ש-<math>\left|\int\limits_0^1 R_n\left(x^2\right)\mathrm dx\right|=\left|\int\limits_0^1\frac{e^cx^{2n+2}}{(n+1)!}\right|<10^{-6}</math>. לכל <math>x\in[0,1]</math> מתקיים <math>e^0\le e^c\le e^1<3</math> ולכן השארית חסומה ע"י <math>3\left|\int\limits_0^1\frac{x^{2n+2}}{(n+1)!}\mathrm dx\right|=\frac3{(2n+3)(n+1)!}</math>. אכן, עבור <math>n=7</math> זה מספיק קטן. לפי זה {{left|<math>\begin{align}\int\limits_0^1 e^{x^2}\mathrm dx&\approx\int\limits_0^1\left(1+x^2+\frac{x^4}{2!}+\frac{x^6}{3!}+\frac{x^8}{4!}+\frac{x^{10}}{5!}+\frac{x^{12}}{6!}+\frac{x^{14}}{7!}\right)\mathrm dx\\&=\dots\\&\approx1.46263694626501\end{align}</math>}} השיטה הזאת לא תמיד מועילה כי <ol><li>לא כל פונקציה גזירה אינסוף פעמים כדי שנוכל לחשב <math>P_n(x)</math> ל-n כלשהו.</li><li>יש פונקציות בעלות אינסוף נגזרות שפשוט לא מקורבות היטב ע"י פיתוח טיילור, ובפרט על קטע ארוך.</li><li>יש פונקציות שקשה לחשב את פיתוח טיילור שלהן כי הוא תלוי בנגזרת מסדר גבוה.</li></ol>
# קירוב ע"פ סכומי רימן. נניח ש-f רציפה בקטע <math>[a,b]</math>. נקח <math>n\in\mathbb N</math> כלשהו ונעשה חלוקה שווה של <math>[a,b]</math>: <math>a=x_0<x_1<\dots<x_n=b</math> כאשר לכל k נגדיר <math>h=\frac{b-a}n=x_k-x_{k-1}</math> (כאשר h הוא אורך הפסיעה בין שתי נקודות החלוקה). הקירוב לאינטגרל נתון ע"י סכום רימן <math>\sum_{k=1}^n f(x_k)\Delta x_k=h\sum_{k-1}^n f(x_k)</math>. כעת נניח ש-f בעלת נגזרת רציפה <math>f'</math> ב-<math>[a,b]</math> ונחשב את סדר גודל הטעות בקירוב הנ"ל: <math>\int\limits_a^b f(x)\mathrm dx=\sum_{k=1}^n\int\limits_{x_{k-1}}^{x_k} f(x_k)\mathrm dx</math>. בתוך הקטע הקטן <math>[x_{k-1},x_k]</math> נסתמך על משפט לגראנז' לומר <math>f'(c)=\frac{f(x)-f(x_k)}{x-x_k}</math> עבור c בין x ל-<math>x_k</math>. נעביר אגף לומר <math>f(x)=f(x_k)+f'(c)(x-x_k)</math> ולכן <math>\int\limits_{x_{k-1}}^{x_k} f(x_k)\mathrm dx+\int\limits_{x_{k-1}}^{x_k} f'(c)(x-x_k)\mathrm dx=f(x_k)(x_k-x_{k-1})+R_k</math>. <math>f(x_k)h</math> היא התרומה של קטע זה לסכום רימן. האינטגרל <math>R_k</math> = הטעות. כעת, אם נסמן <math>M=\max_{x\in[a,b]} |f'(x)|</math> נוכל להסיק {{left|<math>\begin{align}|R_k|&=\left|\int\limits_{x_{k-1}}^{x_k} f'(c)(x-x_k)\mathrm dx\right|\\&\le\int\limits_{x_{k-1}}^{x_k} |f'(c)|(x-x_k)\mathrm dx\\&\le\frac{nMh^2}2\\&=\frac{b-a}{2h}Mh^2\\&=\frac{b-a}2 Mh\end{align}</math>}}
49
עריכות