שינויים

קפיצה אל: ניווט, חיפוש

משתמש:אור שחף/133 - רשימת משפטים

הוסרו 11 בתים, 20:53, 20 בספטמבר 2016
במשפטים הבאים, אלא אם צויין צוין אחרת, נסמן:* <math>c</math> הוא קבוע.* <math>f,g</math> פונקציות.* הקטע הנתון הוא הקטע הסגור <math>[a,b]</math>.* אם מצויין מצוין שלפונקציה יש תכונה מסויימת מסוימת אזי הכוונה לכך שהתכונה מתקיימת בקטע הנתון (למשל: "<math>f</math> חסומה" = "<math>f</math> חסומה ב-<math>[a,b]</math>").* <math>P</math> היא חלוקה <math>\{x_0,x_1,\dots,x_n\}</math> של הקטע הנתון כך ש-<math>a=x_0<x_1<\dots<x_n=b</math>.:* <math>Q</math> היא העדנה של <math>P</math>.:* <math>P'=\{a,c_1,c_2,\dots,c_n,b\}</math> היא חלוקה נוספת של הקטע הנוצרת מהחלוקה <math>P</math> כך ש-<math>\forall1\le k\le n:\ c_k\in[x_{k-1},x_k]</math> ו-<math>\forall 2forall2\le k\le n:\ c_{k-1}\ne c_k</math>.
=אינטגרלים=
* אם <math>F</math> ו-<math>,G</math> קדומות ל-<math>f</math> בנקודה כלשהי אז קיים <math>c</math> כך ש-<math>F(x)=G(x)+c</math>.* אם <math>f</math> חסומה ב-<math>[a,b]</math> אזי <math>m(b-a)\le\underline S(f,P)\le\overline S(f,P)\le M(b-a)</math>.* אם <math>|Q|=|P|+r</math> {{הערה|(כלומר, <math>Q</math> מתקבלת מ-<math>P</math> ע"י הוספת <math>r</math> נקודות)}} ו-<math>f</math> חסומה בקטע אזי <math>0\le\overline S(f,P)-\overline S(f,Q)\le r\lambda(P)\Omega</math> וכן <math>0\le\underline S(f,Q)-\underline S(f,P)\le r\lambda(P)\Omega</math>.* לכל חלוקה <math>Q</math> של הקטע הנתון (לאו דווקא העדנה של <math>P</math>), אם <math>f</math> חסומה בקטע אזי <math>\underline S(f,P)\le\overline S(f,Q)</math>.* לכל <math>f</math> אינטגרבילית מתקיים <math>\underline{\int_aint\limits_a^b }f\le\overline{\int}_a\limits_a^b }f</math>.* תהי <math>f</math> חסומה. אזי <math>\underline{\int_aint\limits_a^b }f=\lim_lim\limits_{\lambda(P)\to0}\underline S(f,P)</math> וגם <math>\overline{\int}_a\limits_a^b }f=\lim_lim\limits_{\lambda(P)\to0}\overline S(f,P)</math>.* נניח ש-כי <math>f</math> חסומה. <math>f</math> אינטגרבילית אם"ם <math>\lim_lim\limits_{\lambda(P)\to0}\overline S(f,P)-\underline S(f,P)=0</math>.* נניח ש-כי <math>f</math> חסומה. <math>f</math> אינטגרבילית אם"ם לכל <math>\varepsilon>0</math> קיימת חלוקה <math>P</math> של <math>[a,b]</math> כך ש-<math>\overline S(f,P)-\underline S(f,P)<\varepsilon</math>.* אם <math>f</math> רציפה אז <math>f</math> אינטגרבילית.:* {{הערה|הכללה:}} אם <math>f</math> רציפה וחסומה בקטע הפתוח <math>(a,b)</math> אזי <math>f</math> אינטגרבילית.::* {{הערה|הכללה להכללה:}} אם <math>f</math> רציפה בקטע בכל נקודה למעט במספר סופי של נקודות והיא חסומה אזי <math>f</math> אינטגרבילית.* אם <math>f</math> מונוטונית אזי היא אינטגרבילית. * נניח ש-כי <math>a<c<b</math>. אזי <math>f</math> אינטגרבילית ב-<math>[a,b]</math>, ב-<math>[a,c]</math> וב-<math>[c,b]</math> אם"ם היא אינטגרבילית ב-<math>[a,b]</math>, ואם כן אז <math>\int\limits_a^b f=\int\limits_a^c f+\int\limits_c^b f</math>.:* {{הערה|הכללה:}} עבור <math>f</math> כנ"ל ו-<math>a=x_0,x_1,\dots,x_n=b</math> (הנקודות לאו דווקא מסודרות בסדר עולה) מתקיים <math>\int\limits_a^b f=\sum_sum\limits_{k=1}^n\int\limits_{x_{k-1}}^{x_k} f</math>.* אם <math>f</math> חסומה אז <math>\underline S(f,P)\le S(f,P,P')\le\overline S(f,P)</math>. יתר על כן, <math>\underline S(f,P)=\inf_{P'}\ S(f,P,P')</math> ו-<math>\overline S(f,P)=\sup_{P'}\ S(f,P,P')</math>.* הגדרות האינטגרל לפי דרבו דארבו ולפי רימן רימאן שקולות.* '''לינאריות:''' עבור <math>f,g</math> אינטגרביליות מתקיים <math>\int\limits_a^b [f+cg]=\int\limits_a^b f+c\int\limits_a^b g</math>.* '''מונוטוניות:''' אם <math>f,g</math> אינטגרביליות וכן <math>\forall x\in[a,b]:\ f(x)\ge g(x)</math> אזי <math>\int\limits_a^b f\ge\int\limits_a^b g</math>.:* '''חיוביות:''' בפרט מתקיים שאם <math>f</math> אינטגרביליות ואי-שלילית אזי <math>\int\limits_a^b f\ge0</math>.* '''הכללה לאי-שיוויון שוויון המשולש:''' אם <math>|f|</math> אינטגרבילית אז <math>f</math> אינטגרבילית ו-<math>\left|\int\limits_a^b f\right|\le\int\limits_a^b |f|</math>.* אם <math>f</math> אינטגרבילית וחסומה אז <math>m(b-a)\le\int\limits_a^b f\le M(b-a)</math>.:* {{הערה|מקרה פרטי:}} אם <math>\forall x\in[a,b]:\ |f(x)|\le M</math> ו-<math>f</math> אינטגרבילית אז <math>\left|\int\limits_a^b f\right|\le M(b-a)</math>.::* {{הערה|מקרה פרטי:}} אם <math>f(x)=M</math> (פונקציה קבועה) אז <math>\int\limits_a^b f=M(b-a)</math>.* '''המשפט היסודי של חשבון אינטגרלי:''' תהי <math>f</math> אינטגרבילית ותהי <math>F</math> כך ש-<math>\forall x\in[a,b]:\ F(x):=\int\limits_a^x f</math>. אזי <math>F</math> רציפה וכן לכל נקודה <math>x_0</math> ב-<math>[a,b]</math> שבה <math>f</math> רציפה, <math>F</math> קדומה ל-<math>f</math> (כלומר, <math>F</math> גזירה ב-<math>x_0</math> כך ש-<math>F'(x_0)=f(x_0)</math>).* '''נוסחת ניוטון-לייבניץ:''' תהי <math>f</math> רציפה. אזי <math>\int\limits_a^b f=[F(x)]_{x=a}^b=F(b)-F(a)</math>.* לכל <math>f</math> רציפה יש פונקציה קדומה.* '''אינטגרציה בחלקים:''' נניח כי <math>f',g'</math> רציפות. אזי <math>\int f(x)g'(x)\mathrm dx=f(x)g(x)-\int f'(x)g(x)\mathrm dx</math>.:* <math>\int\limits_a^b f\cdot g'=[f(x)g(x)]_{x=a}^b-\int\limits_a^b f'\cdot g</math>* '''שיטת ההצבה:''' <math>\int f(g(x))g'(x)\mathrm dx=F(g(x)){\color{Gray}+c}</math>.:* <math>\int\limits_a^b f(g(x))g'(x)\mathrm dx=\int\limits_{g(a)}^{g(b)}f(g(x))\mathrm dg(x)</math>* כל פונקציה רציונלית רציונאלית <math>\frac pq{p}{q}</math> כך ש-<math>\deg(p)<\deg(q)</math> ניתנת לפירוק יחיד כסכום של שברים חלקיים <math>\frac {A}{(x-x_0)^n}+\frac{Bx+c}{(x^2+bx+c)^k}</math> כאשר <math>A,B,C,x_0\in\mathbb R\ \and\ n,k\in\mathbb N</math> ול-<math>x^2+bx+c</math> אין שורשים ממשיים.* נפח גוף הסיבוב הנוצר מסיבוב השטח שמתחת ל-<math>f</math> אי-שלילית בין בקטע <math>[a</math> ל-<math>,b]</math> סביב ציר ה-<math>x</math> הוא <math>\int\limits_a^b \pi f(x)^22dx</math>.* אם <math>f</math> רציפה אז הממוצע שלה בקטע <math>[a,b]</math> הוא <math>\frac1frac{1}{b-a}\int\limits_a^b f</math>.* אם <math>f</math> גזירה אז אורך הגרף שלה בקטע <math>[a,b]</math> הוא <math>\int\limits_a^b\sqrt{1+f'(x)^2}\mathrm dx</math>.* שטח המעטפת (ללא הבסיסים) של גוף סיבוב הנוצר מסיבוב הגרף של <math>f</math> רציפה סביב ציר ה-<math>x</math> בקטע <math>[a,b]</math> הוא <math>\int\limits_a^b 2\pi f(x)\sqrt{1+f'(x)^2}\mathrm dx</math>.* '''קירוב האינטגרל בעזרת טורי טיילור:''' תהא <math>f</math> בעלת נגזרת <math>n</math>-ית רציפה. אזי <math>\int\limits_a^b f\approx\int\limits_a^b P_n</math> כאשר <math>P_n</math> הוא פיתוח טיילור מסדר <math>n</math> של <math>f</math> והשארית היא <math>\int\limits_a^b R_n=f^{(n+1)}(c)\frac{b^{n+2}-a^{n+2}}{(n+2)!}</math> עבור <math>\min\{a,x_0\}\le c\le\max\{b,x_0\}</math> כאשר פיתוח טיילור נעשה סביב <math>x_0</math>.* '''קירוב האינטגרל בשיטת המלבנים:''' תהא <math>f</math> בעלת נגזרת רציפה והחלוקה <math>P</math> היא חלוקה שווה כאשר לכל <math>k</math> מתקיים <math>\Delta x_k=h</math>. אזי <math>\int\limits_a^b f\approx h\sum_sum\limits_{k=1}^n f(x_k)</math> והשארית חסומה ע"י <math>\frac{b-a}2Mh</math> כאשר <math>M=\max_{x\in[a,b]}\leftbig|f'(x)\rightbig|</math>.* '''קירוב האינטגרל בשיטת הטרפזים:''' תהא <math>f</math> בעלת נגזרת שנייה שניה רציפה והחלוקה <math>P</math> היא חלוקה שווה כאשר לכל <math>k</math> מתקיים <math>\Delta x_k=h</math>. אזי <math>\int\limits_a^b f\approx h\frac{f(x_0)+f(x_n)}2+h\sum_{k=1}^{n-1}f(x_k)</math> והשארית חסומה ע"י <math>\frac5{12}(b-a)Mh^2</math> כאשר <math>M=\max_{x\in[a,b]}\left|f''(x)\right|</math>.
* '''קירוב האינטגרל בשיטת סימפסון:''' תהא <math>f</math> בעלת נגזרת רביעית רציפה והחלוקה <math>P</math> היא חלוקה שווה כאשר לכל <math>k</math> מתקיים <math>\Delta x_k=h</math> ו-<math>n</math> זוגי. אזי <math>\int\limits_a^b f\approx\frac h3\left(f(x_0)+4\sum_{k=1}^{n/2} f(x_{2k-1})+2\sum_{k=1}^{n/2-1}f(x_{2k})+f(x_n)\right)</math> והשגיאה חסומה ע"י <math>\frac{b-a}{180}Mh^4</math> כאשר <math>M=\max_{x\in[a,b]}\left|f^{(4)}(x)\right|</math>.
* תהיינה <math>f,g</math> אינטגרביליות ב-<math>[a,\infty)</math>. אזי <math>f+cg</math> אינטגרבילית ב-<math>[a,\infty)</math> ומתקיים <math>\int\limits_a^\infty f+cg=\int\limits_a^\infty f+c\int\limits_a^\infty g</math>.
226
עריכות