שינויים

עמוד ראשי

נוספו 3,682 בתים, 16:39, 26 בנובמבר 2009
/* שאלת הבונוס */
לפי משפט, כמות הוקטורים העצמיים הבת"ל של מטריצה שהיא סכום ישר של מטריצות, היא סכום כמויות הוקטורים העצמיים הבת"ל בכל אחת מן המטריצות. זה נכון כי <math>rank(A\oplus B)=rankA+rankB</math>. אבל הראנו שיש בסכום הישר של המטריצה <math>J^2</math> את הבלוק <math>J_r(\lambda)^2</math> שתורם פחות מ <math>r</math> וקטורים עצמיים בת"ל. ולכן לכל המטריצה <math>J^2</math> יש פחות מ<math>n</math> וקטורים עצמיים בת"ל, ולכן היא לא לכסינה. סתירה.
 
'''3.'''
 
אנחנו מעל המרוכבים, ולכן <math>A</math> דומה למטריצה משולשית <math>U</math> שבאלכסון שלה נמצאים הע"ע של <math>A</math>. לכן <math>A^2=P^{-1}D^2P</math> כלומר הע"ע של <math>A^2</math> הם בדיוק הריבועים של הע"ע של <math>A</math>.
 
 
נוכיח שהמרחב העצמי של <math>A^2</math> עבור הע"ע <math>\lambda_i^2</math> (נסמן אותו ב<math>V_{\lambda_i^2}^{A^2}</math>), שווה לסכום המרחבים העצמיים של <math>A</math> עבור הע"ע <math>\pm\lambda_i</math> (נסמן אותם ב<math>V_{\pm\lambda_i}^A</math>. כלומר נוכיח ש <math>V_{\lambda_i^2}^{A^2} = V_{\lambda_i}^A \oplus V_{-\lambda_i}^A </math>.
 
 
דבר ראשון נראה שהסכום הוא אכן ישר. נניח <math>w \in V_{\lambda_i}^A</math> אזי <math>Aw=\lambda_i w</math> וגם <math>w \in V_{-\lambda_i}^A</math> אזי <math>Aw=-\lambda_i w</math> לכן ההפרש בינהם יוצא <math>0=Aw-Aw=2\lambda_iw</math>. כעת, נתון ש<math>A</math> לא הפיכה ולכן 0 לא ע"ע שלה. ולכן <math>w=0</math> כלומר הסכום הוא ישר.
 
 
דבר שני, נראה הכלה בכיוון ראשון. נניח <math>w \in V_{\lambda_i}^A \oplus V_{-\lambda_i}^A</math> אזי <math>w=v_1+v_2</math> כך ש <math>Aw=Av_1+Av_2=\lambda_i v_1-\lambda_i v_2</math> ונכפול שוב במטריצה לקבל <math>A^2w=\lambda_i^2v_1+\lambda_i^2v_2=\lambda_i^2w</math> ולכן <math>w \in V_{\lambda_i^2}^{A^2}</math>. ולכן <math>V_{\lambda_i^2}^{A^2} \supseteq V_{\lambda_i}^A \oplus V_{-\lambda_i}^A </math>.
 
 
בכיוון ההפוך, נניח <math>w \in V_{\lambda_i^2}^{A^2}</math> לכן <math>(A^2-\lambda_i^2I)w=0</math> לכן <math>(A-\lambda_iI)(A+\lambda_iI)w=0</math> וגם <math>(A+\lambda_iI)(A-\lambda_iI)w=0</math>. אם <math>(A+\lambda_iI)w=0</math> אזי <math>w \in V_{-\lambda_i}^A</math> וסיימנו. אם <math>(A-\lambda_iI)w=0</math> אזי <math>w \in V_{\lambda_i}^A</math> וסיימנו.
 
 
אם שתי האופציות לא נכונות, כלומר <math>(A-\lambda_iI)w \neq 0</math> וגם <math>(A+\lambda_iI)w \neq 0</math> אזי נסמן <math>u_1=(A+\lambda_iI)w</math> ונסמן <math>u_2=(A-\lambda_iI)w</math>.
 
מהמשוואות למעלה רואים ש <math>(A-\lambda_iI)u_1=0</math> וגם <math>(A+\lambda_iI)u_2=0</math>. לכן הם שייכים למרחבים העצמיים המתאימים של <math>A</math> ולכן <math>u_1-u_2 \in V_{\lambda_i}^A \oplus V_{-\lambda_i}^A</math>. אבל <math>u_1-u_2=Aw+\lambda_iw-Aw + \lambda_iw = 2\lambda_iw</math> ולכן <math>2\lambda_iw \in V_{\lambda_i}^A \oplus V_{-\lambda_i}^A</math> ולכן <math>w \in V_{\lambda_i}^A \oplus V_{-\lambda_i}^A</math> ולכן <math>V_{\lambda_i^2}^{A^2} \subseteq V_{\lambda_i}^A \oplus V_{-\lambda_i}^A </math>.
 
מכיוון שהראנו הכלה דו-כיוונית אזי <math>V_{\lambda_i^2}^{A^2} = V_{\lambda_i}^A \oplus V_{-\lambda_i}^A </math> כפי שרצינו להוכיח.
 
 
כעת, <math>A^2</math> לסכינה, ולכן סכום הריבויים הגיאומטרים של הע"ע שלה שווה <math>n</math>. אבל הריבוי הגיאומטרי זה מימד המרחב העצמי, ולכן <math>\sum_idim(V_{\lambda_i^2}^{A^2})=n</math> אבל זה שווה <math>n=\sum_idim(V_{\lambda_i^2}^{A^2})=\sum_i[dim(V_{\lambda_i}^A)+dim(V_{-\lambda_i}^A)]</math> אבל זה בדיוק סכום הריבויים הגיאומטריים של <math>A</math>, ויצא לנו שהוא גם כן שווה <math>n</math>. ולכן <math>A</math> לכסינה.