הבדלים בין גרסאות בדף "פולינום מינימלי"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
(יצירת דף עם התוכן "==הגדרה== תהי A מטריצה ריבועית. אזי הפולינום המינימלי של A, מסומן <math>m_A(x)</math> הוא הפולינום המת...")
 
שורה 11: שורה 11:
  
 
*לפולינום האופייני והפולינום המינימלי בדיוק אותם גורמים אי פריקים. בפרט, השורשים של הפולינום המינימלי הם הערכים העצמיים של המטריצה.
 
*לפולינום האופייני והפולינום המינימלי בדיוק אותם גורמים אי פריקים. בפרט, השורשים של הפולינום המינימלי הם הערכים העצמיים של המטריצה.
 +
 +
==תרגילים==
 +
 +
===א===
 +
הוכח כי למטריצות דומות אותו פולינום מינימלי
 +
 +
 +
'''הוכחה.'''
 +
 +
ראשית נשים לב לעובדה הבאה- יהי פולינום f ותהיינה מטריצות דומות A,B אזי גם המטריצות <math>f(A),f(B)</math> דומות.
 +
 +
אכן, נסמן <math>f(x)=a_nx^n+...+a_0</math> ונסמן <math>A=P^{-1}BP</math>. לכן:
 +
 +
 +
מסקנה: נניח A,B מטריצות דומות, אזי לכל פולינום f מתקיים <math>f(A)=0</math> אם"ם <math>f(B)=0</math>.
 +
 +
אכן, המטריצה היחידה הדומה למטריצת האפס הינה מטריצת האפס עצמה. כיוון ש<math>f(A),f(B)</math> דומות, המסקנה נובעת.
 +
 +
 +
בסה"כ, כיוון שהפולינומים המאפסים מטריצות דומות הם אותם פולינומים, בפרט המינימלי המתוקן מבינהם הוא אותו אחד.
 +
 +
===ב===
 +
::<math>f(A)=f(P^{-1}BP)=a_n(P^{-1}BP)^n+...+a_0I = a_nP^{-1}B^nP+...+a_0P^{-1}P = P^{-1}f(B)P</math>
 +
 +
 +
 +
[[קטגוריה:אלגברה לינארית]]

גרסה מ־07:02, 13 בנובמבר 2012

הגדרה

תהי A מטריצה ריבועית. אזי הפולינום המינימלי של A, מסומן m_A(x) הוא הפולינום המתוקן מהדרגה הנמוכה ביותר המקיים

m_A(A)=0

הערה: פולינום מתוקן הינו פולינום מהצורה x^n+a_{n-1}x^{n-1}+...+a_1x+a_0, כלומר המקדם של המונום בעל החזקה הגבוהה ביותר הינו אחד.


תכונות

  • לכל פולינום f כך ש f(A)=0 מתקיים m_A(x)|f(x). בפרט ממשפט קיילי-המילטון נובע כי הפולינום המינימלי מחלק את הפולינום האופייני
  • לפולינום האופייני והפולינום המינימלי בדיוק אותם גורמים אי פריקים. בפרט, השורשים של הפולינום המינימלי הם הערכים העצמיים של המטריצה.

תרגילים

א

הוכח כי למטריצות דומות אותו פולינום מינימלי


הוכחה.

ראשית נשים לב לעובדה הבאה- יהי פולינום f ותהיינה מטריצות דומות A,B אזי גם המטריצות f(A),f(B) דומות.

אכן, נסמן f(x)=a_nx^n+...+a_0 ונסמן A=P^{-1}BP. לכן:


מסקנה: נניח A,B מטריצות דומות, אזי לכל פולינום f מתקיים f(A)=0 אם"ם f(B)=0.

אכן, המטריצה היחידה הדומה למטריצת האפס הינה מטריצת האפס עצמה. כיוון שf(A),f(B) דומות, המסקנה נובעת.


בסה"כ, כיוון שהפולינומים המאפסים מטריצות דומות הם אותם פולינומים, בפרט המינימלי המתוקן מבינהם הוא אותו אחד.

ב

f(A)=f(P^{-1}BP)=a_n(P^{-1}BP)^n+...+a_0I = a_nP^{-1}B^nP+...+a_0P^{-1}P = P^{-1}f(B)P