שינויים

קפיצה אל: ניווט, חיפוש

פתרון אינפי 1, תש"נ

הוסרו 9 בתים, 13:06, 4 בנובמבר 2016
[[קטגוריה:פתרון מבחנים]][[קטגוריה:אינפי]]
([http://u.cs.biu.ac.il/~sheinee/tests/math/88132/4ef19f65ab044.pdf המבחן] )
 
==שאלה 2==
נגדיר פונקציה <math>h</math> על-ידי <math>\forall x \in [0,2]: h(x)=x\cdot f(x)</math> . <math>h</math> רציפה בקטע הנ"ל כמכפלת 2 פונקציות רציפות.
<math>h(2)=2f(2)=2\cdot 1=2</math> ואילו <math>h(0)=0f(0)=0</math> ולכן לפי משפט ערך הביניים <math>\exists x_0 \in [0,2]:h(x)=1</math>.
בנקודה זו מתקיים הדרוש - <math>h(x)=x_0\cdot f(x_0)=1\to f(x_0)=\frac1{x_0}</math> . מש"ל.
==שאלה 3==
א) משפט טיילור - תהי <math>f</math> פונקציה מוגדרת וגזירה <math>n+1</math> פעמים בסביבה <math>S</math> של <math>x_0</math> . אז <math>\forall x \in S: f(x)=P_n(x)+R_n(x)</math> , כאשר <math>P_n(x)=\sum\limits_{k=0}^n\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k</math>.
ב)תהי <math>f(x)=x^3-4x^2+2x</math>. אנחנו יודעים שפיתוח טיילור של פולינום עבור סדר גדול מדרגתו או שווה לו יהיה שווה לפולינום עצמו, ולכן התרגיל די מיותר, אבל נפתור בכל זאת:
נחשב נגזרות - <math>f'(x)=(x^3-4x^2+2x)'=3x^2-8x+2</math>
<math>P_5(x)=\sum_{k=0}^{5}\frac{f^{(k)}(2)}{k!}(x-2)^k=f(2)+f'(2)(x-2)+\frac{f''(2)}{2}(x-2)^2+\frac{f'''(2)}{6}(x-2)^3+0+0=</math>
<math>=2^3-4\cdot 4cdot4+4+(3\cdot 4cdot4-8\cdot 2cdot2+2)(x-2)+\frac{(12-8)}{2}(x-2)^2+\frac66frac{6}{6}(x-2)^3</math>
<math>P_5(x)=-4-2(x-2)+2(x-2)^2+(x-2)^3</math> ,
==שאלה 4==
הפונקציה בכל מחזור <math>\pi</math> תעלה בדיוק ב- <math>\pi</math> , ולכן הפונקציה היא אוסף עותקים עולים ('קופצים') ב- <math>\pi</math> בכל פעם של קטע בודד באורך <math>\pi</math> שלה. (ראו הגרף)
נימוק פורמלי: <math>f(x+\pi)=x+\pi+\sin(2x+2\pi)=x+\sin(2x)+\pi=f(x)+\pi</math> .
נגזור: <math>f'(x)=1+2\cos(2x)=0\iff \cos(2x)=-\frac12</math>
<math>\iff 2x=\frac{2\pi}{3}+2\pi k \ \vee or 2x=-\frac{2\pi}{3}+2\pi k \iff x=\frac{\pi}{3}+\pi k \vee or x=-\frac{\pi}{3}+\pi k \ (k\in\N)</math>
זה סיזיפי, אבל מוצאים אילו מהנקודות הנ"ל הן בתחום, מציבים בנגזרת השניה לבדיקת סוג קיצון וכו'.
226
עריכות