שינויים

קפיצה אל: ניווט, חיפוש

פתרון אינפי 1, תש"נ

נוספו 16 בתים, 00:57, 9 בפברואר 2017
נגדיר פונקציה <math>h</math> על-ידי <math>\forall x\in[0,2]:h(x)=x\cdot f(x)</math> . <math>h</math> רציפה בקטע הנ"ל כמכפלת 2 פונקציות רציפות.
<math>h(2)=2f(2)=2\cdot 1cdot1=2</math> ואילו <math>h(0)=0f(0)=0</math> ולכן לפי משפט ערך הביניים <math>\exists x_0\in[0,2]:h(x)=1</math> .
בנקודה זו מתקיים הדרוש - <math>h(x)=x_0\cdot f(x_0)=1\to f(x_0)=\frac1{x_0}</math> . מש"ל.<math>\blacksquare</math>
==שאלה 3==
א) משפט טיילור - תהי <math>f</math> פונקציה מוגדרת וגזירה <math>n+1</math> פעמים בסביבה <math>S</math> של <math>x_0</math> . אז <math>\forall x\in S:f(x)=P_n(x)+R_n(x)</math> , כאשר <math>P_n(x)=\sumdisplaystyle\limits_sum_{k=0}^n\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k</math> .
ב)תהי <math>f(x)=x^3-4x^2+2x</math> . אנחנו יודעים שפיתוח טיילור של פולינום עבור סדר גדול מדרגתו או שווה לו יהיה שווה לפולינום עצמו, ולכן התרגיל די מיותר, אבל נפתור בכל זאת:
<math>f^{(4)}(x)=f^{(5)}(x)=0</math>
<math>\begin{align}P_5(x)&=\sum_{k=0}^{5}\frac{f^{(k)}(2)}{k!}(x-2)^k=f(2)+f'(2)(x-2)+\frac{f''(2)}{2}(x-2)^2+\frac{f'''^{(3)}(2)}{6}(x-2)^3+0+0\\&=2^3-4\cdot4+4+(3\cdot4-8\cdot2+2)(x-2)+\frac{(12-8)}{2}(x-2)^2+\frac{6}{6}(x-2)^3\\&=-4-2(x-2)+2(x-2)^2+(x-2)^3\end{align}</math>
<math>=2^3-4\cdot4+4+(3\cdot4-8\cdot2+2)(x-2)+\frac{(12-8)}{2}(x-2)^2+\frac{6}{6}(x-2)^3</math>
 
<math>P_5(x)=-4-2(x-2)+2(x-2)^2+(x-2)^3</math> ,
ועם קצת פתיחת סוגריים ופישוט נקבל את הפולינום שהתחלנו ממנו.
226
עריכות