שינויים

קפיצה אל: ניווט, חיפוש

פתרון אינפי 1, תשס"ב, מועד א,

נוספו 7,720 בתים, 10:45, 12 בספטמבר 2021
[[קטגוריה:פתרון מבחנים]][[קטגוריה:אינפי]]([http://uexams.csmath.biu.ac.il/~sheinee/tests/math/88132/4ef1a6025793d.pdf המבחן])
==חלק א'==1) התשובה היא ב'.  שלא כמו בלמה של קנטור, חסרה ההנחה של שאיפת גודל ההפרש לאפסל-0. דוגמה:<math>a_n=2</math> היא סדרה עולה החסומה מלעיל ע"י <math>b_1</math> (1+\frac{1}{n}באינדוקציה - <math>b_1</math> גדולה יותר מכל שאר אברי <math>b</math> שגדולים יותר מכל אברי <math>a</math>)ולכן מתכנסת. בצורה דומה, <math>b_n</math>היא סדרה יורדת החסומה מלרע ע"י <math>a_1</math> ולכן מתכנסת. פוסל את ג', ד'. נותר להראות באמצעות דוגמא את ב': דוגמא: <math>a_n=2\left(1+\dfrac1n\right),b_n=-2\left(1+\frac{1}{n}dfrac1n\right)</math>.
2) התשובה היא ב'.
הפרכה לג', ד': <math>an=1/n</math>. ברור <math>a_n \to \infty </math> אבל <math>\lim_{n \to \infty }{\sqrt[n]{a_n}}=1</math>.
אותה סדרה היא גם הפרכה טריוויאלית לסעיף א'.
ב' נכון שכן <math>\frac{1}{|a_n|} \to \infty </math>.
הפרכה לג', ד': <math>a_n=\dfrac1n</math> . ברור <math>a_n\to0</math> אבל <math>\lim\limits_{n\to\infty}{\sqrt[n]{a_n}}=1</math> .
אותה סדרה היא גם הפרכה טריוויאלית לסעיף א'. ב' נכון שכן <math>\dfrac1{|a_n|}\to\infty</math> .
 
(נובע ישירות מההגדרות, שכן אם <math>|a_n|<\varepsilon</math> אז <math>\dfrac1{|a_n|}>\dfrac1{\varepsilon}</math> .)
 
פורמלית: יהי <math>\varepsilon>0</math> . מתקיים <math>a_n\to\infty</math> ולכן לכל <math>\dfrac1{\varepsilon}</math> קיים <math>N</math> כך ש- <math>\forall n<N:|a_n|<\dfrac1{\varepsilon}</math> , כלומר כך ש- <math>\dfrac1{|a_n|}>\varepsilon</math> . <math>\blacksquare</math>
 
 
 
3) ד'. <math>\infty</math> או 0 נקודות. שתי דוגמאות:
<math>a_n=n,a_n=1+\dfrac1n</math> . באחת יש אינסוף נקודות
(סדרה מתכנסת ולכן חסומה, ולכן כל מה שגדול מהחסם העליון שלה), בשניה נניח בשלילה שיש נקודה <math>x=c</math> בחיתוך ונתבונן במקום <math>n=c+1</math> , כלומר בקטע <math>[c+1,\infty)</math> שלא מכיל את <math>c</math> כלל, בסתירה.
 
 
 
4) התשובה היא ד'.
 
הפרכה לא', ב', ג': נגדיר <math>f(x)=\begin{cases}x+2&x\ne9\\x+3&x=9\end{cases},g(x)=\begin{cases}x+3&x\ne9\\x+2&x=9\end{cases}</math>
 
אז ברור שההרכבה רציפה, שכן <math>f\bigl(g(x)\bigr)=\begin{cases}x+5&x\ne9\\x+5&x=9\end{cases}=x+5</math> והוכחנו רציפות כל הפונקציות הלינאריות.
 
<math>f,g</math> אינן רציפות ב-9, ולכן זאת הפרכה ל-ג' והוכחה ל-ד'.
 
 
5)
*עבור <math>r=1</math> מקבלים טור מתכנס לפי לייבניץ, מה שפוסל את ג',ד'.
*עבור <math>r=0</math> הטור מתכנס (ל-0) מה שפוסל את ב'. עבור <math>r=-1</math> מקבלים <math>\frac1{n^{\frac12}}</math>, שמתבדר לפי העיבוי כי <math>\frac12<1</math> . פוסל את א'.
לכן נותרנו רק עם ה', שהיא התשובה הנכונה. (ישירות, נראה שהטור מתכנס בהחלט עבור <math>-1<r<1</math> , ובפרט מתכנס, ואז נבדוק את המקרים הנותרים.)
 
 
6 הורוביץ) ברור שב'. הפרכה לא',ג': <math>f(x)=\begin{cases}\dfrac{x}{2}&x\le4\\4x&x>4\end{cases}</math>
 
 
עולה ממש ואינה רציפה בקטע <math>(-152.3,17)</math> .
 
 
הוכחת ב': בשלילה, <math>\exists x_1,x_2\in\R:x_1\ne x_2\and f(x_1)=f(x_2)</math> .
 
בסתירה לכך ש- <math>f</math> עולה ממש, שהרי בה"כ <math>x_1<x_2</math> ולכן <math>f(x_1)<f(x_2)</math> בסתירה להיותם שווים.
 
 
6 זלצמן וקליין) ג'. ד"ר שיין הוכיח טענה כמעט זהה - 7.8.
;הוכחה
<math>f</math> עולה ממש ולכן לפי ההשאלה הקודמת היא חח"ע. <math>f</math> גזירה ב- <math>x_0</math> ובפרט רציפה בסביבתה. לכן הפונקציה ההפוכה מוגדרת ורציפה בסביבת <math>y_0</math> . כעת, לפי ההנחה <math>f</math> גזירה ב- <math>x_0</math> ולכן <math>\lim\limits_{x\to x_0}\dfrac{f(x)-f(x_0)}{x-x_0}=f'(x_0)</math> .
 
מכאן נקבל <math>\lim\limits_{x\to x_0}\dfrac{x-x_0}{f(x)-f(x_0)}=\frac1{f'(x_0)}</math> , בהנחה שהנגזרת שונה מ-0 . לכן <math>\lim\limits_{y\to y_0}\dfrac{f^{-1}(y)-f^{-1}(y_0)}{y-y_0}=\frac1{f'(x_0)}</math> ובפרט קיים. לכן הפונקציה ההפוכה גזירה ב- <math>x_0</math> . בכיוון ההפוך, נראה את ה- contrapositive: אם הפונ' ההפוכה גזירה אז הנגזרת שווה להופכי של הנגזרת של <math>f</math> , ולכן הנגזרת שונה מ-0 (זה לא נימוק לגמרי פורמלי).
 
 
==חלק ב'==
7)
 
<math>\begin{align}f(x)&=\dfrac{1+x\cos(x)}{x+2}\\f'(x)&=\frac{\bigl(1+x\cos(x)\bigr)'(x+2)-\bigl(1+x\cos(x)\bigr)(x+2)'}{(x+2)^2}=\frac{\bigl(\cos(x)-x\sin(x)\bigr)(x+2)-\bigl(1+x\cos(x)\bigr)}{(x+2)^2}\\&=\frac{x\cos(x)-x^2\sin(x)+2\cos(x)-2x\sin(x)-1-x\cos(x)}{(x+2)^2}=\frac{2\cos(x)-x\sin(x)(x+2)-1}{(x+2)^2}\\f'(0)&=\frac{2\cos(0)-0\sin(0)(0+2)-1}{(0+2)^2}=\frac{2-1}{2^2}=\frac14\end{align}</math>
 
זהו שיפוע המשיק.
 
כעת, נציב במשוואת ישר עם הנקודה <math>\left(0,\tfrac12\right)</math> ונקבל: <math>y=\dfrac14x+\dfrac12</math>
 
 
8) היה במערכי התרגול [[http://math-wiki.com/index.php?title=88-132_%D7%90%D7%99%D7%A0%D7%A4%D7%99_1_%D7%A1%D7%9E%D7%A1%D7%98%D7%A8_%D7%90%27_%D7%AA%D7%A9%D7%A2%D7%91/%D7%9E%D7%A2%D7%A8%D7%9A_%D7%AA%D7%A8%D7%92%D7%95%D7%9C/%D7%A1%D7%93%D7%A8%D7%95%D7%AA/%D7%9E%D7%95%D7%A0%D7%95%D7%98%D7%95%D7%A0%D7%99%D7%95%D7%AA]] עבור סכום עד <math>3n</math> . הפתרון כמעט זהה. נראה שהיא מונוטונית וחסומה:
 
<math>a_{n+1}-a_n=\frac1{2n+1}+\frac1{2n+2}-\frac1n\le\frac1{2n}+\frac1{2n}-\frac1n=\frac2{2n}-\frac1n=0</math>
ולכן הסדרה היא מונוטונית יורדת. באינדוקציה הסדרה חסומה מלרע ע"י <math>0</math> (כי סכום חיוביים הוא חיובי). לכן הסדרה מתכנסת.
 
 
9) <s>הטור מתבדר, שכן התנאי הההכרחי אינו מתקיים; הסדרה אינה שואפת ל-0 כאשר <math>n\to\infty</math> אלא שואפת לאינסוף.</s>
(המשפט הקודם נכון, אבל זוועתי להוכחה, ויש דרך קלה:)
 
בשביל לבדוק התכנסות בהחלט, נשתמש במבחן קושי: נחפש את הגבול העליון של <math>8\left(\dfrac{n}{n+2}\right)^n</math> .
 
<math>8\left(\frac{n}{n+2}\right)^n=8\left(1-\frac2{n+2}\right)^n=8\left(1-\frac1{\frac{n+2}{2}}\right)^{\frac{(n+2)}{2}\cdot2-2}=8\left(\left(1-\frac1{\frac{n+2}{2}}\right)^{\frac{(n+2)}{2}}\right)^2\cdot\left(1-\frac1{\tfrac{n+2}{2}}\right)^{-2}</math>
 
קיבלנו גורם 8, גורם <math>(e^{-1})^2</math> , וגורם 1. לכן הגבול, ובפרט הגבול העליון, הוא <math>\dfrac8{e^2}>1</math> , (מסכן מי ששכח להביא מחשבון - זה יוצא די קרוב ל-1) ולכן הטור הנתון אינו מתכנס בהחלט. יתרה מכך, עפ"י המשפט שהוכחנו (משפט קושי המעודן, לתלמידי ד"ר שיין) נובע מכך שהטור המקורי מתבדר.
 
==חלק ג'==
10)
;הפרכה
ניקח <math>a_n=\dfrac{(-1)^n}{n},b_n=\dfrac{(-1)^n}{\ln(n)}</math> .
 
לפי לייבניץ הטור <math>\displaystyle\sum_{n=1}^\infty a_n</math> מתכנס, וברור כי <math>b_n\to0</math> שכן <math>\ln(n)\to\infty</math> , אבל המכפלה <math>\displaystyle\sum_{n=1}^\infty a_n\cdot b_n=\sum_{n=1}^\infty\frac1{n\cdot\ln(n)}</math> מתבדרת לפי מבחן העיבוי, שיעורי הבית, הבוחן ומבחן האינטגרל:)
 
(נגדיר <math>b_1=0</math> בשביל ענייני תחום-הגדרה, ברור שזה לא משנה)
3) ד'. <math>\infty </math> או 0 נק'. שתי דוגמאות:
<math>a_n=n</math>, <math>a_n=1+1/n</math>. באחת יש אינסוף נקודות
(סדרה מתכנסת ולכן חסומה, ולכן כל מה שגדול מהחסם העליון שלה), בשנייה בשלילה יש נקודה <math>x=c</math> בחיתוך ונתבונן במקום <math>n=c+1</math>, שלא מכיל את c כלל, בסתירה.
11) נגדיר פונקציה <math>h</math> על-ידי <math>\forall x\in[-1,1]:h(x)=f(x)-x^2</math> . כעת, נתבונן ב- <math>h(1),h(2),h(3)</math> :
<math>h(1)=f(1)-1^2=f(1)-1<0</math> ואילו <math>h(0)=f(0)-0^2=f(0)-0>0</math> , ולכן לפי משפט ערך הביניים ל- <math>h</math> יש שורש (כלומר היא מתאפסת) בנקודה כלשהי בקטע <math>(0,1)</math> .
4) התשובה היא ד'. הפרכה לא', ב'באותו האופן, ג': נגדיר <math>fh(x-1)=\left\{\begin{matrix}x+f(-1)-(-1)^2 &x\neq 9 \\ x+3 & x=9\end{matrix}\right.f(-1)-1<0</math>, ולכן יש ל- <math>h</math> שורש בקטע <math>g(x-1,0)=\left\{\begin{matrix}x+3 &x\neq 9 \\ x+2 & x=9\end{matrix}\right</math> .כל שורש של <math>h</math>הוא נקודה בה הפונקציות שוות, ומצאנו שיש לפחות 2 כאלה.
אז ברור שההרכבה רציפה, שכן <math>f(g(x))=\left\{\begin{matrix}
x+5 &x\neq 9 \\
x+5 & x=9
\end{matrix}\right.=x+5</math> והוכחנו רציפות כל הפונקציות הליניאריות.
גם f וגם g אינן רציפות ב12 זלצמן);הוכחהכיון ש-9, ולכן זאת הפרכה לג' והוכחה לד'<math>\sin(2\cdot0)=0</math> אז ניתן להגדיר את <math>f</math> "מחדש" כפונקציה מפוצלת באופן הבא (מבלי לשנות בעצם את הגדרת <math>f</math>).
5) עבור r=1 מקבלים טור מתכנס לפי לייבניץ, מה שפוסל את ג',ד'. עבור r=0 הטור מתכנס <math>f(ל0x) מה שפוסל את ב'. עבור r=-1 מקבלים <math>\fracbegin{1cases}{n^{\fracsin(2x)&x\ge0\\x&x<0\end{1}{2}}cases}</math>, שמתבדר לפי העיבוי כי 1/2<1. פוסל את א', לכן נותרנו רק עם ה', שהיא התשובה הנכונה.(ישירות, נראה שהטור מתכנס בהחלט עבור <math>-1<r<1</math>, ובפרט מתכנס, ואז נבדוק את המקרים הנותרים.)
6 הורוביץ) ברור שב'. הפרכה לא',ג': <math>f\sin(x2x)</math> רציפה ובעלת מחזור <math>p=\leftpi</math> ולכן רציפה במ"ש ב- <math>\{R</math> ולכן רציפה במ"ש גם בכל קטע חלקי ל- <math>\begin{matrix}R</math> , ובפרט בקרן החיובית הסגורה <math>[0,\infty)</math> .
\frac{x}{2} & ידוע ש- <math>x</math> רציפה במ"ש ב- <math>\leq4 \\ 4x & else\end{matrix}\right.R</math> עולה ממש ואינה ולכן רציפה בקטע במ"ש גם בכל קטע חלקי ל- <math>\R</math> , ובפרט בקרן השלילית הסגורה <math>(-152.3\infty,17)0]</math>.
לכן <math>f</math> רציפה במ"ש ב- <math>[0,\infty)</math> וכמו כן ב- <math>(-\infty,0]</math> . לקרנות הנ"ל יש נקודה משותפת <math>x=0</math> ולכן (לפי משפט ממערכי התרגול) <math>f</math> רציפה באיחוד הקרנות, שהוא הישר הממשי כולו.
הוכחת ב': בשלילה, <math>\exists x_1,x_2 \in \mathbb{R}:x1 \neq x_2 \wedge f(x_1) = f(x_2)</math>.
בסתירה לכך ש 12 קליין) נגדיר פונקציה <math>f h</math> עולה ממש, שהרי בה"כ על-ידי <math>x_1<x_2</math> ולכן <math> f\forall x\in I:h(x_1x) < =f(x_2x)-x</math> בסתירה להיותם שווים.
7<math>h</math> מתאפסת בשתי נקודות שונות בקטע <math>I</math> ולכן לפי משפט רול קיימת נקודה בפנים הקטע בה נגזרתה מתאפסת. כלומר <math>\exists c\in I:h'(c) =0</math>. לכן <math>h'(c)=(f(x)-x)'=\frac{f'(x)-1+xcosx}{=0</math> , ומכאן <math>f'(x+2})=1</math>.<math>\blacksquare</math>
<math>f'(x)=\frac{(1+xcosx)'{x+2}-(1+xcosx)(x+2)'}{(x+2)^2}=\frac{(cosx-xsinx)(x+2)-(1+xcosx)}{(x+2)^2}==xcosx-x^2sinx+2cosx-2xsinx-1-xcosx}{(x+2)^2</math>
812 הורוביץ) פונקציה רציפה בקטע סגור מקבלת בו מקסימום ומינימום (ויירשטראס II) היה במערכי התרגול. הראינו שהיא עולה וחסומהבשלילה, נניח שהאינפימום אינו חיובי, ומיד נקבל סתירה שכן הפונקציה צריכה לקבל את האינפימום שלה, ובנקודה זאת הפונקציה תהיה אי-חיובית, בסתירה.<math>\blacksquare</math>
220
עריכות