שינויים

קפיצה אל: ניווט, חיפוש

פתרון אינפי 1, תשס"ב, מועד א,

נוספו 7,712 בתים, 10:45, 12 בספטמבר 2021
[[קטגוריה:פתרון מבחנים]][[קטגוריה:אינפי]]([http://uexams.csmath.biu.ac.il/~sheinee/tests/math/88132/4ef1a6025793d.pdf המבחן])
==חלק א'==1) התשובה היא ב'.  שלא כמו בלמה של קנטור, חסרה ההנחה של שאיפת גודל ההפרש לאפסל-0. דוגמה:<math>a_n=2</math> היא סדרה עולה החסומה מלעיל ע"י <math>b_1</math> (1+\frac{1}{n}באינדוקציה - <math>b_1</math> גדולה יותר מכל שאר אברי <math>b</math> שגדולים יותר מכל אברי <math>a</math>)ולכן מתכנסת. בצורה דומה, <math>b_n</math>היא סדרה יורדת החסומה מלרע ע"י <math>a_1</math> ולכן מתכנסת. פוסל את ג', ד'. נותר להראות באמצעות דוגמא את ב': דוגמא: <math>a_n=2\left(1+\dfrac1n\right),b_n=-2\left(1+\frac{1}{n}dfrac1n\right)</math>.
2) התשובה היא ב'.
הפרכה לג', ד': <math>an=1/n</math>. ברור <math>a_n \to \infty </math> אבל <math>\lim_{n \to \infty }{\sqrt[n]{a_n}}=1</math>.
אותה סדרה היא גם הפרכה טריוויאלית לסעיף א'.
ב' נכון שכן <math>\frac{1}{|a_n|} \to \infty </math>.
הפרכה לג', ד': <math>a_n=\dfrac1n</math> . ברור <math>a_n\to0</math> אבל <math>\lim\limits_{n\to\infty}{\sqrt[n]{a_n}}=1</math> .
אותה סדרה היא גם הפרכה טריוויאלית לסעיף א'. ב' נכון שכן <math>\dfrac1{|a_n|}\to\infty</math> .
 
(נובע ישירות מההגדרות, שכן אם <math>|a_n|<\varepsilon</math> אז <math>\dfrac1{|a_n|}>\dfrac1{\varepsilon}</math> .)
 
פורמלית: יהי <math>\varepsilon>0</math> . מתקיים <math>a_n\to\infty</math> ולכן לכל <math>\dfrac1{\varepsilon}</math> קיים <math>N</math> כך ש- <math>\forall n<N:|a_n|<\dfrac1{\varepsilon}</math> , כלומר כך ש- <math>\dfrac1{|a_n|}>\varepsilon</math> . <math>\blacksquare</math>
 
 
 
3) ד'. <math>\infty</math> או 0 נקודות. שתי דוגמאות:
<math>a_n=n,a_n=1+\dfrac1n</math> . באחת יש אינסוף נקודות
(סדרה מתכנסת ולכן חסומה, ולכן כל מה שגדול מהחסם העליון שלה), בשניה נניח בשלילה שיש נקודה <math>x=c</math> בחיתוך ונתבונן במקום <math>n=c+1</math> , כלומר בקטע <math>[c+1,\infty)</math> שלא מכיל את <math>c</math> כלל, בסתירה.
 
 
 
4) התשובה היא ד'.
 
הפרכה לא', ב', ג': נגדיר <math>f(x)=\begin{cases}x+2&x\ne9\\x+3&x=9\end{cases},g(x)=\begin{cases}x+3&x\ne9\\x+2&x=9\end{cases}</math>
 
אז ברור שההרכבה רציפה, שכן <math>f\bigl(g(x)\bigr)=\begin{cases}x+5&x\ne9\\x+5&x=9\end{cases}=x+5</math> והוכחנו רציפות כל הפונקציות הלינאריות.
 
<math>f,g</math> אינן רציפות ב-9, ולכן זאת הפרכה ל-ג' והוכחה ל-ד'.
 
 
5)
*עבור <math>r=1</math> מקבלים טור מתכנס לפי לייבניץ, מה שפוסל את ג',ד'.
*עבור <math>r=0</math> הטור מתכנס (ל-0) מה שפוסל את ב'. עבור <math>r=-1</math> מקבלים <math>\frac1{n^{\frac12}}</math>, שמתבדר לפי העיבוי כי <math>\frac12<1</math> . פוסל את א'.
לכן נותרנו רק עם ה', שהיא התשובה הנכונה. (ישירות, נראה שהטור מתכנס בהחלט עבור <math>-1<r<1</math> , ובפרט מתכנס, ואז נבדוק את המקרים הנותרים.)
 
 
6 הורוביץ) ברור שב'. הפרכה לא',ג': <math>f(x)=\begin{cases}\dfrac{x}{2}&x\le4\\4x&x>4\end{cases}</math>
 
 
עולה ממש ואינה רציפה בקטע <math>(-152.3,17)</math> .
 
 
הוכחת ב': בשלילה, <math>\exists x_1,x_2\in\R:x_1\ne x_2\and f(x_1)=f(x_2)</math> .
 
בסתירה לכך ש- <math>f</math> עולה ממש, שהרי בה"כ <math>x_1<x_2</math> ולכן <math>f(x_1)<f(x_2)</math> בסתירה להיותם שווים.
 
 
6 זלצמן וקליין) ג'. ד"ר שיין הוכיח טענה כמעט זהה - 7.8.
;הוכחה
<math>f</math> עולה ממש ולכן לפי ההשאלה הקודמת היא חח"ע. <math>f</math> גזירה ב- <math>x_0</math> ובפרט רציפה בסביבתה. לכן הפונקציה ההפוכה מוגדרת ורציפה בסביבת <math>y_0</math> . כעת, לפי ההנחה <math>f</math> גזירה ב- <math>x_0</math> ולכן <math>\lim\limits_{x\to x_0}\dfrac{f(x)-f(x_0)}{x-x_0}=f'(x_0)</math> .
 
מכאן נקבל <math>\lim\limits_{x\to x_0}\dfrac{x-x_0}{f(x)-f(x_0)}=\frac1{f'(x_0)}</math> , בהנחה שהנגזרת שונה מ-0 . לכן <math>\lim\limits_{y\to y_0}\dfrac{f^{-1}(y)-f^{-1}(y_0)}{y-y_0}=\frac1{f'(x_0)}</math> ובפרט קיים. לכן הפונקציה ההפוכה גזירה ב- <math>x_0</math> . בכיוון ההפוך, נראה את ה- contrapositive: אם הפונ' ההפוכה גזירה אז הנגזרת שווה להופכי של הנגזרת של <math>f</math> , ולכן הנגזרת שונה מ-0 (זה לא נימוק לגמרי פורמלי).
 
 
==חלק ב'==
7)
 
<math>\begin{align}f(x)&=\dfrac{1+x\cos(x)}{x+2}\\f'(x)&=\frac{\bigl(1+x\cos(x)\bigr)'(x+2)-\bigl(1+x\cos(x)\bigr)(x+2)'}{(x+2)^2}=\frac{\bigl(\cos(x)-x\sin(x)\bigr)(x+2)-\bigl(1+x\cos(x)\bigr)}{(x+2)^2}\\&=\frac{x\cos(x)-x^2\sin(x)+2\cos(x)-2x\sin(x)-1-x\cos(x)}{(x+2)^2}=\frac{2\cos(x)-x\sin(x)(x+2)-1}{(x+2)^2}\\f'(0)&=\frac{2\cos(0)-0\sin(0)(0+2)-1}{(0+2)^2}=\frac{2-1}{2^2}=\frac14\end{align}</math>
 
זהו שיפוע המשיק.
 
כעת, נציב במשוואת ישר עם הנקודה <math>\left(0,\tfrac12\right)</math> ונקבל: <math>y=\dfrac14x+\dfrac12</math>
 
 
8) היה במערכי התרגול [[http://math-wiki.com/index.php?title=88-132_%D7%90%D7%99%D7%A0%D7%A4%D7%99_1_%D7%A1%D7%9E%D7%A1%D7%98%D7%A8_%D7%90%27_%D7%AA%D7%A9%D7%A2%D7%91/%D7%9E%D7%A2%D7%A8%D7%9A_%D7%AA%D7%A8%D7%92%D7%95%D7%9C/%D7%A1%D7%93%D7%A8%D7%95%D7%AA/%D7%9E%D7%95%D7%A0%D7%95%D7%98%D7%95%D7%A0%D7%99%D7%95%D7%AA]] עבור סכום עד <math>3n</math> . הפתרון כמעט זהה. נראה שהיא מונוטונית וחסומה:
 
<math>a_{n+1}-a_n=\frac1{2n+1}+\frac1{2n+2}-\frac1n\le\frac1{2n}+\frac1{2n}-\frac1n=\frac2{2n}-\frac1n=0</math>
ולכן הסדרה היא מונוטונית יורדת. באינדוקציה הסדרה חסומה מלרע ע"י <math>0</math> (כי סכום חיוביים הוא חיובי). לכן הסדרה מתכנסת.
 
 
9) <s>הטור מתבדר, שכן התנאי הההכרחי אינו מתקיים; הסדרה אינה שואפת ל-0 כאשר <math>n\to\infty</math> אלא שואפת לאינסוף.</s>
(המשפט הקודם נכון, אבל זוועתי להוכחה, ויש דרך קלה:)
 
בשביל לבדוק התכנסות בהחלט, נשתמש במבחן קושי: נחפש את הגבול העליון של <math>8\left(\dfrac{n}{n+2}\right)^n</math> .
 
<math>8\left(\frac{n}{n+2}\right)^n=8\left(1-\frac2{n+2}\right)^n=8\left(1-\frac1{\frac{n+2}{2}}\right)^{\frac{(n+2)}{2}\cdot2-2}=8\left(\left(1-\frac1{\frac{n+2}{2}}\right)^{\frac{(n+2)}{2}}\right)^2\cdot\left(1-\frac1{\tfrac{n+2}{2}}\right)^{-2}</math>
 
קיבלנו גורם 8, גורם <math>(e^{-1})^2</math> , וגורם 1. לכן הגבול, ובפרט הגבול העליון, הוא <math>\dfrac8{e^2}>1</math> , (מסכן מי ששכח להביא מחשבון - זה יוצא די קרוב ל-1) ולכן הטור הנתון אינו מתכנס בהחלט. יתרה מכך, עפ"י המשפט שהוכחנו (משפט קושי המעודן, לתלמידי ד"ר שיין) נובע מכך שהטור המקורי מתבדר.
 
==חלק ג'==
10)
;הפרכה
ניקח <math>a_n=\dfrac{(-1)^n}{n},b_n=\dfrac{(-1)^n}{\ln(n)}</math> .
 
לפי לייבניץ הטור <math>\displaystyle\sum_{n=1}^\infty a_n</math> מתכנס, וברור כי <math>b_n\to0</math> שכן <math>\ln(n)\to\infty</math> , אבל המכפלה <math>\displaystyle\sum_{n=1}^\infty a_n\cdot b_n=\sum_{n=1}^\infty\frac1{n\cdot\ln(n)}</math> מתבדרת לפי מבחן העיבוי, שיעורי הבית, הבוחן ומבחן האינטגרל:)
3) ד'. (נגדיר <math>\infty </math> או b_1=0 נק'. שתי דוגמאות: <math>a_n=n</math>בשביל ענייני תחום-הגדרה, <math>a_n=1+1/n</math>. באחת יש אינסוף נקודות (סדרה מתכנסת ולכן חסומה, ולכן כל מה שגדול מהחסם העליון שלהברור שזה לא משנה), בשנייה בשלילה יש נקודה <math>x=c</math> בחיתוך ונתבונן במקום <math>n=c+1</math>, שלא מכיל את c כלל, בסתירה.
11) נגדיר פונקציה <math>h</math> על-ידי <math>\forall x\in[-1,1]:h(x)=f(x)-x^2</math> . כעת, נתבונן ב- <math>h(1),h(2),h(3)</math> :
4) התשובה היא ד'. הפרכה לא', ב', ג': נגדיר <math>fh(x1)=\left\{\begin{matrix}x+f(1)-1^2 &x\neq 9 \\ x+3 & x=9\end{matrix}\right.f(1)-1<0</math>, ואילו <math>gh(x0)=\left\{\begin{matrix}x+3 &x\neq 9 \\ x+f(0)-0^2 & x=9\end{matrix}\right.f(0)-0>0</math>, ולכן לפי משפט ערך הביניים ל- <math>h</math> יש שורש (כלומר היא מתאפסת) בנקודה כלשהי בקטע <math>(0,1)</math> .
אז ברור שההרכבה רציפהבאותו האופן, שכן <math>h(-1)=f(g-1)-(x)-1)^2=\left\{\begin{matrix}x+5 &x\neq 9 \\ x+5 & x=9\end{matrix}\right.=x+5f(-1)-1<0</math> והוכחנו רציפות ולכן יש ל- <math>h</math> שורש בקטע <math>(-1,0)</math> . כל שורש של <math>h</math> הוא נקודה בה הפונקציות הליניאריותשוות, ומצאנו שיש לפחות 2 כאלה.
גם f וגם g אינן רציפות ב-9, ולכן זאת הפרכה לג' והוכחה לד'.
512 זלצמן) עבור r=1 מקבלים טור מתכנס לפי לייבניץ, מה שפוסל את ג',ד'. עבור r=0 הטור מתכנס (ל0) מה שפוסל את ב'. עבור r=;הוכחהכיון ש-1 מקבלים <math>\frac{1}{n^{sin(2\frac{1}{2}}}cdot0)=0</math>, שמתבדר לפי העיבוי כי 1אז ניתן להגדיר את <math>f</2<1. פוסל math> "מחדש" כפונקציה מפוצלת באופן הבא (מבלי לשנות בעצם את א', לכן נותרנו רק עם ה', שהיא התשובה הנכונה.הגדרת (ישירות, נראה שהטור מתכנס בהחלט עבור <math>-1<r<1f</math>, ובפרט מתכנס, ואז נבדוק את המקרים הנותרים).)
6 הורוביץ) ברור שב'. הפרכה לא',ג': <math>f(x)=\left\begin{cases}\beginsin(2x)&x\ge0\\x&x<0\end{matrixcases}</math>
<math>\frac{x}{2} & x\leq4 sin(2x)</math> רציפה ובעלת מחזור <math>p=\\ 4x & else\end{matrix}\right.pi</math> עולה ממש ואינה ולכן רציפה בקטע במ"ש ב- <math>(\R</math> ולכן רציפה במ"ש גם בכל קטע חלקי ל-152.3<math>\R</math> ,17ובפרט בקרן החיובית הסגורה <math>[0,\infty)</math>.
ידוע ש- <math>x</math> רציפה במ"ש ב- <math>\R</math> ולכן רציפה במ"ש גם בכל קטע חלקי ל- <math>\R</math> , ובפרט בקרן השלילית הסגורה <math>(-\infty,0]</math> .
הוכחת לכן <math>f</math> רציפה במ"ש ב': בשלילה, - <math>\exists x_1[0,x_2 \in \mathbb{R}:x1 \neq x_2 \wedge f(x_1infty) </math> וכמו כן ב- <math>(-\infty,0]</math> . לקרנות הנ"ל יש נקודה משותפת <math>x= f0</math> ולכן (x_2לפי משפט ממערכי התרגול)<math>f</math>רציפה באיחוד הקרנות, שהוא הישר הממשי כולו.
בסתירה לכך ש <math>f </math> עולה ממש, שהרי בה"כ <math>x_1<x_2</math> ולכן <math> f(x_1) < f(x_2)</math> בסתירה להיותם שווים.
712 קליין) נגדיר פונקציה <math>fh</math> על-ידי <math>\forall x\in I:h(x)=\frac{1+xcosx}{f(x)-x+2}</math>.
<math>fh</math> מתאפסת בשתי נקודות שונות בקטע <math>I</math> ולכן לפי משפט רול קיימת נקודה בפנים הקטע בה נגזרתה מתאפסת. כלומר <math>\exists c\in I:h'(xc)=\frac{0</math> . לכן <math>h'(1+xcosxc)'=(f(x+2)-(1+xcosx)(x+2)'}{(x+2)^2}=\frac{(cosx-xsinx)f'(x+2)-(1+xcosx)}{=0</math> , ומכאן <math>f'(x+2)^2}\frac{=1</math> . <math>\blacksquare</math>
xcosx-x^2sinx+2cosx-2xsinx-1-xcosx}{(x+2)^2}</math>
812 הורוביץ) פונקציה רציפה בקטע סגור מקבלת בו מקסימום ומינימום (ויירשטראס II) היה במערכי התרגול. הראינו שהיא עולה וחסומהבשלילה, נניח שהאינפימום אינו חיובי, ומיד נקבל סתירה שכן הפונקציה צריכה לקבל את האינפימום שלה, ובנקודה זאת הפונקציה תהיה אי-חיובית, בסתירה.<math>\blacksquare</math>
220
עריכות