שינויים

קפיצה אל: ניווט, חיפוש

פתרון אינפי 1, תשס"ב, מועד א,

נוספו 5,793 בתים, 10:45, 12 בספטמבר 2021
[[קטגוריה:פתרון מבחנים]][[קטגוריה:אינפי]]([http://uexams.csmath.biu.ac.il/~sheinee/tests/math/88132/4ef1a6025793d.pdf המבחן])
==חלק א'==1) התשובה היא ב'.  שלא כמו בלמה של קנטור, חסרה ההנחה של שאיפת גודל ההפרש לאפסל-0. דוגמה:<math>a_n=2</math> היא סדרה עולה החסומה מלעיל ע"י <math>b_1</math> (1+\frac{1}{n}באינדוקציה - <math>b_1</math> גדולה יותר מכל שאר אברי <math>b</math> שגדולים יותר מכל אברי <math>a</math>)ולכן מתכנסת. בצורה דומה, <math>b_n</math>היא סדרה יורדת החסומה מלרע ע"י <math>a_1</math> ולכן מתכנסת. פוסל את ג', ד'. נותר להראות באמצעות דוגמא את ב': דוגמא: <math>a_n=2\left(1+\dfrac1n\right),b_n=-2\left(1+\frac{1}{n}dfrac1n\right)</math>.
2) התשובה היא ב'.
הפרכה לג', ד': <math>a_n=1/n</math>. ברור <math>a_n \to \infty </math> אבל <math>\lim_{n \to \infty }{\sqrt[n]{a_n}}=1</math>.
אותה סדרה היא גם הפרכה טריוויאלית לסעיף א'.
ב' נכון שכן <math>\frac{1}{|a_n|} \to \infty </math>.
הפרכה לג', ד': <math>a_n=\dfrac1n</math> . ברור <math>a_n\to0</math> אבל <math>\lim\limits_{n\to\infty}{\sqrt[n]{a_n}}=1</math> .
אותה סדרה היא גם הפרכה טריוויאלית לסעיף א'. ב' נכון שכן <math>\dfrac1{|a_n|}\to\infty</math> .
3) ד'. (נובע ישירות מההגדרות, שכן אם <math>|a_n|<\infty varepsilon</math> או 0 נק'. שתי דוגמאות: אז <math>\dfrac1{|a_n=n</math|}>, <math>a_n=1+1/n\dfrac1{\varepsilon}</math>. באחת יש אינסוף נקודות (סדרה מתכנסת ולכן חסומה, ולכן כל מה שגדול מהחסם העליון שלה), בשנייה בשלילה יש נקודה <math>x=c</math> בחיתוך ונתבונן במקום <math>n=c+1</math>, שלא מכיל את c כלל, בסתירה.
פורמלית: יהי <math>\varepsilon>0</math> . מתקיים <math>a_n\to\infty</math> ולכן לכל <math>\dfrac1{\varepsilon}</math> קיים <math>N</math> כך ש- <math>\forall n<N:|a_n|<\dfrac1{\varepsilon}</math> , כלומר כך ש- <math>\dfrac1{|a_n|}>\varepsilon</math> . <math>\blacksquare</math>
4) התשובה היא ד'. הפרכה לא', ב', ג': נגדיר <math>f(x)=\left\{\begin{matrix}
x+2 &x\neq 9 \\
x+3 & x=9
\end{matrix}\right.</math>, <math>g(x)=\left\{\begin{matrix}
x+3 &x\neq 9 \\
x+2 & x=9
\end{matrix}\right.</math>
אז ברור שההרכבה רציפה, שכן 3) ד'. <math>f(g(x))=\left\{\begin{matrix}infty</math> או 0 נקודות. שתי דוגמאות: x<math>a_n=n,a_n=1+5 &x\neq 9 \\ dfrac1n</math> . באחת יש אינסוף נקודות x+5 & (סדרה מתכנסת ולכן חסומה, ולכן כל מה שגדול מהחסם העליון שלה), בשניה נניח בשלילה שיש נקודה <math>x=9\end{matrix}\right.c</math> בחיתוך ונתבונן במקום <math>n=xc+51</math> והוכחנו רציפות כל הפונקציות הליניאריות, כלומר בקטע <math>[c+1,\infty)</math> שלא מכיל את <math>c</math> כלל, בסתירה.
גם f וגם g אינן רציפות ב-9, ולכן זאת הפרכה לג' והוכחה לד'.
5) עבור r=1 מקבלים טור מתכנס לפי לייבניץ, מה שפוסל את ג',ד'. עבור r=0 הטור מתכנס (ל0) מה שפוסל את ב'. עבור r=-1 מקבלים <math>\frac{1}{n^{\frac{1}{2}}}</math>, שמתבדר לפי העיבוי כי 1/2<1. פוסל את א', לכן נותרנו רק עם ה', שהיא התשובה הנכונה.
(ישירות, נראה שהטור מתכנס בהחלט עבור <math>-1<r<1</math>, ובפרט מתכנס, ואז נבדוק את המקרים הנותרים.)
6 הורוביץ4) ברור שבהתשובה היא ד'. הפרכה לא',ג': <math>f(x)=\left\{\begin{matrix}
הפרכה לא', ב', ג': נגדיר <math>f(x)=\fracbegin{xcases}{x+2} & x\leq4 ne9\\ 4x x+3& elsex=9\end{matrixcases}\right.</math> עולה ממש ואינה רציפה בקטע <math>(-152.3,17g(x)=\begin{cases}x+3&x\ne9\\x+2&x=9\end{cases}</math>.
אז ברור שההרכבה רציפה, שכן <math>f\bigl(g(x)\bigr)=\begin{cases}x+5&x\ne9\\x+5&x=9\end{cases}=x+5</math> והוכחנו רציפות כל הפונקציות הלינאריות.
הוכחת ב': בשלילה, <math>\exists x_1,x_2 \in \mathbb{R}:x1 \neq x_2 \wedge f(x_1) = f(x_2),g</math>אינן רציפות ב-9, ולכן זאת הפרכה ל-ג' והוכחה ל-ד'.
בסתירה לכך ש <math>f </math> עולה ממש, שהרי בה"כ <math>x_1<x_2</math> ולכן <math> f(x_1) < f(x_2)</math> בסתירה להיותם שווים.
5)
*עבור <math>r=1</math> מקבלים טור מתכנס לפי לייבניץ, מה שפוסל את ג',ד'.
*עבור <math>r=0</math> הטור מתכנס (ל-0) מה שפוסל את ב'. עבור <math>r=-1</math> מקבלים <math>\frac1{n^{\frac12}}</math>, שמתבדר לפי העיבוי כי <math>\frac12<1</math> . פוסל את א'.
לכן נותרנו רק עם ה', שהיא התשובה הנכונה. (ישירות, נראה שהטור מתכנס בהחלט עבור <math>-1<r<1</math> , ובפרט מתכנס, ואז נבדוק את המקרים הנותרים.)
7) <math>f(x)=\frac{1+xcosx}{x+2}</math>.
6 הורוביץ) ברור שב'. הפרכה לא',ג': <math>f'(x)=\fracbegin{(1+xcosx)'(x+2)-(1+xcosx)(x+2)'cases}\dfrac{(x+2)^2}=\frac{(cosx-xsinx)(x+2)-(1+xcosx)}{(&x+2)^2}\fracle4\\4x&x>4\end{=cases}</math>
xcosx-x^2sinx+2cosx-2xsinx-1-xcosx}{(x+2)^2}</math>
עולה ממש ואינה רציפה בקטע <math>(-152.3,17)</math> .  הוכחת ב': בשלילה, <math>\exists x_1,x_2\in\R:x_1\ne x_2\and f(x_1)=f(x_2)</math> . בסתירה לכך ש- <math>f</math> עולה ממש, שהרי בה"כ <math>x_1<x_2</math> ולכן <math>f(x_1)<f(x_2)</math> בסתירה להיותם שווים.  6 זלצמן וקליין) ג'. ד"ר שיין הוכיח טענה כמעט זהה - 7.8.;הוכחה<math>f</math> עולה ממש ולכן לפי ההשאלה הקודמת היא חח"ע. <math>f</math> גזירה ב- <math>x_0</math> ובפרט רציפה בסביבתה. לכן הפונקציה ההפוכה מוגדרת ורציפה בסביבת <math>y_0</math> . כעת, לפי ההנחה <math>f</math> גזירה ב- <math>x_0</math> ולכן <math>\lim\limits_{x\to x_0}\dfrac{f(x)-f(x_0)}{x-x_0}=f'(x_0)</math> . מכאן נקבל <math>\lim\limits_{x\to x_0}\dfrac{x-x_0}{f(x)-f(x_0)}=\frac1{f'(x_0)}</math> , בהנחה שהנגזרת שונה מ-0. לכן <math>\lim\limits_{y\to y_0}\dfrac{f^{-1}(y)-f^{-1}(y_0)}{y-y_0}=\fracfrac1{f'(x_0)}</math> ובפרט קיים. לכן הפונקציה ההפוכה גזירה ב- <math>x_0</math> . בכיוון ההפוך, נראה את ה- contrapositive: אם הפונ' ההפוכה גזירה אז הנגזרת שווה להופכי של הנגזרת של <math>f</math> , ולכן הנגזרת שונה מ-0(זה לא נימוק לגמרי פורמלי).  ==חלק ב'==7) <math>\begin{align}f(x)&=\dfrac{1+x\cos(x)}{x+2}\\f'(x)&=\frac{\bigl(1+x\cos(x)\bigr)'(x+2)-\bigl(1+x\cos(x)\bigr)(x+2)'}{(x+2)^2sin02}=\frac{\bigl(\cos(x)-x\sin(x)\bigr)(x+2cos02)-0sin0\bigl(1+x\cos(x)\bigr)}{(x+2)^2}\\&=\frac{x\cos(x)-x^2\sin(x)+2\cos(x)-2x\sin(x)-1-x\cos(x)}{(0x+2)^2}=\frac{2\cos(x)-x\sin(x)(x+2)-1}{(x+2)^2}\\f'(0)&=\frac{2\cos(0)-0\sin(0)(0+2)-1}{4(0+2)^2}=\frac{2-1}{2^2}=\frac14\end{align}</math>
זהו שיפוע המשיק.
כעת, נציב במש' במשוואת ישר עם הנקודה <math>\left(0,\fractfrac12\right)</math> ונקבל: <math>y=\dfrac14x+\dfrac12</math>  8) היה במערכי התרגול [[http://math-wiki.com/index.php?title=88-132_%D7%90%D7%99%D7%A0%D7%A4%D7%99_1_%D7%A1%D7%9E%D7%A1%D7%98%D7%A8_%D7%90%27_%D7%AA%D7%A9%D7%A2%D7%91/%D7%9E%D7%A2%D7%A8%D7%9A_%D7%AA%D7%A8%D7%92%D7%95%D7%9C/%D7%A1%D7%93%D7%A8%D7%95%D7%AA/%D7%9E%D7%95%D7%A0%D7%95%D7%98%D7%95%D7%A0%D7%99%D7%95%D7%AA]] עבור סכום עד <math>3n</math> . הפתרון כמעט זהה. נראה שהיא מונוטונית וחסומה:  <math>a_{n+1}-a_n=\frac1{2n+1}+\frac1{2n+2}-\frac1n\le\frac1{2n}+\frac1{2n}-\frac1n=\frac2{2n}-\frac1n=0</math>ולכן הסדרה היא מונוטונית יורדת. באינדוקציה הסדרה חסומה מלרע ע"י <math>0</math> (כי סכום חיוביים הוא חיובי). לכן הסדרה מתכנסת.  9)<s>הטור מתבדר, שכן התנאי הההכרחי אינו מתקיים; הסדרה אינה שואפת ל-0 כאשר <math>n\to\infty</math>אלא שואפת לאינסוף.</s>(המשפט הקודם נכון, ונקבלאבל זוועתי להוכחה, ויש דרך קלה:) בשביל לבדוק התכנסות בהחלט, נשתמש במבחן קושי: נחפש את הגבול העליון של <math>y=8\left(\dfrac{n}{n+2}\right)^n</math> . <math>8\left(\frac{n}{n+2}\right)^n=8\left(1-\frac2{n+2}\right)^n=8\left(1-\frac1{\frac{n+2}{2}}\right)^{\frac{(n+2)}{2}\cdot2-2}=8\left(\left(1-\frac1{\frac{n+2}{2}}\right)^{\frac{(n+2)}{2}}\right)^2\cdot\left(1-\frac1{\tfrac{n+2}{42}}\right)^{-2}</math> קיבלנו גורם 8, גורם <math>(e^{-1})^2</math> , וגורם 1. לכן הגבול, ובפרט הגבול העליון, הוא <math>\dfrac8{e^2}>1</math> , (מסכן מי ששכח להביא מחשבון - זה יוצא די קרוב ל-1) ולכן הטור הנתון אינו מתכנס בהחלט. יתרה מכך, עפ"י המשפט שהוכחנו (משפט קושי המעודן, לתלמידי ד"ר שיין) נובע מכך שהטור המקורי מתבדר. ==חלק ג'==10);הפרכהניקח <math>a_n=\dfrac{(-1)^n}{n},b_n=\dfrac{(-1)^n}{\ln(n)}</math> . לפי לייבניץ הטור <math>\displaystyle\sum_{n=1}^\infty a_n</math> מתכנס, וברור כי <math>b_n\to0</math> שכן <math>\ln(n)\to\infty</math> , אבל המכפלה <math>\displaystyle\sum_{n=1}^\infty a_n\cdot b_n=\sum_{n=1}^\infty\frac1{n\cdot\ln(n)}</math> מתבדרת לפי מבחן העיבוי, שיעורי הבית, הבוחן ומבחן האינטגרל:) (נגדיר <math>b_1=0</math> בשביל ענייני תחום-הגדרה, ברור שזה לא משנה)  11) נגדיר פונקציה <math>h</math> על-ידי <math>\forall x\in[-1,1]:h(x)=f(x)-x^2</math>. כעת, נתבונן ב- <math>h(1),h(2),h(3)</math> : <math>h(1)=f(1)-1^2=f(1)-1<0</math> ואילו <math>h(0)=f(0)-0^2=f(0)-0>0</math> , ולכן לפי משפט ערך הביניים ל- <math>h</math> יש שורש (כלומר היא מתאפסת) בנקודה כלשהי בקטע <math>(0,1)</math> . באותו האופן, <math>h(-1)=f(-1)-(-1)^2=f(-1)-1<0</math> ולכן יש ל- <math>h</math> שורש בקטע <math>(-1,0)</math> . כל שורש של <math>h</math> הוא נקודה בה הפונקציות שוות, ומצאנו שיש לפחות 2 כאלה.
8) היה במערכי התרגול. הראינו שהיא עולה וחסומה.
912 זלצמן) בשביל לבדוק התכנסות בהחלט, נשתמש במבחן קושי: נחפש את הגבול העליון של ;הוכחהכיון ש- <math>8(\frac{n}{n+sin(2}\cdot0)^n=0</math>אז ניתן להגדיר את <math>f</math> "מחדש" כפונקציה מפוצלת באופן הבא (מבלי לשנות בעצם את הגדרת <math>f</math>).
<math>8f(\frac{n}{n+2}x)^n=8(1-\fracbegin{2cases}{n+2})^n=8(1-\frac{1}{\frac{n+2}{2}})^{\frac{sin(n+22x)}{2}&x\cdot 2-2}=8((1-ge0\frac{1}{\frac{n+2}{2}})^{x&x<0\frac{(n+2)}{2}})^2\cdot (1-\frac{1}{\frac{n+2}{2}})^end{-2cases}</math>
קיבלנו גורם 8, גורם <math>\sin(e^{-1}2x)^2</math>, וגורם 1. לכן הגבול, ובפרט הגבול העליון, הוא רציפה ובעלת מחזור <math>p=\frac{8}{e^2}pi</math>1ולכן רציפה במ"ש ב- <math>\R</math>, ולכן הטור הנתון אינו מתכנס בהחלטרציפה במ"ש גם בכל קטע חלקי ל- <math>\R</math> , ובפרט בקרן החיובית הסגורה <math>[0,\infty)</math> .
ידוע ש- <math>x</math> רציפה במ"ש ב- <math>\R</math> ולכן רציפה במ"ש גם בכל קטע חלקי ל- <math>\R</math> , ובפרט בקרן השלילית הסגורה <math>(-\infty,0]</math> .
11) נגדיר פונקצייה h על ידי לכן <math>\forall x \in [f</math> רציפה במ"ש ב-1<math>[0,1]: h(x\infty)=f</math> וכמו כן ב- <math>(x)-x^2\infty,0]</math>. כעת, נתבונן בלקרנות הנ"ל יש נקודה משותפת <math>hx=0</math> ולכן (1),h(2),h(3לפי משפט ממערכי התרגול)<math>f</math>: רציפה באיחוד הקרנות, שהוא הישר הממשי כולו.
<math>h(1)=f(1)-1^2=f(1)-1<0
</math>
ואילו <math>h(0)=f(0)-0^2=f(0)-0>0
</math>, ולכן לפי משפט ערך הביניים ל-<math>h</math> יש שורש (כלומר היא מתאפסת) בנקודה כלשהי בקטע <math>(0,1)</math>.
באותו האופן, 12 קליין) נגדיר פונקציה <math>h(-1)=f(-1)-(-1)^2=f(-1)-1<0</math> ולכן יש לעל-ידי <math>\forall x\in I:h </math> שורש בקטע <math>(-1,0x)=f(x)-x</math>. כל שורש של h הוא נקודה בה הפונ' שוות, ומצאנו שיש לפחות 2 כאלה.
12 קליין) נגדיר פונקצייה h על ידי <math>\forall x \in I: h(x)=f(x)-x</math>. h מתאפסת בשתי נקודות שונות בקטע <math>I</math> ולכן לפי משפט רול קיימת נק' נקודה בפנים הקטע בה נגזרתה מתאפסת. כלומר <math>\exists c \in I: h'(c)=0</math>. לכן <math>h'(c)=(f(x)-x)'=f'(x)-1=0\Rightarrow </math> , ומכאן <math>f'(x)=1</math>. מש"ל.<math>\blacksquare</math>
12 הורוביץ) פונקציה רציפה בקטע סגור מקבלת בו מקסימום ומינימום (ויירשטראס II). בשלילה, נניח שהאינפימום אינו חיובי, ומיד נקבל סתירה שכן הפונקציה צריכה לקבל את האינפימום שלה, ובנקודה זאת הפונקציה תהיה אי-חיובית, בסתירה. <math>\blacksquare</math>
220
עריכות