הבדלים בין גרסאות בדף "פתרון 4 (אלעד איטח)"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
(יצירת דף עם התוכן "א. אחרי חישובים נקבל שהפולינום האופייני של A הוא <math>f_{A}(x)=\left | xI-A \right |=(x-1)^{2}(x-2)</math> ב. לפולינ...")
 
שורה 2: שורה 2:
  
 
ב. לפולינום המינימאלי של A יש אותם גורמים אי-פריקים כמו לפולינום האופייני של A.
 
ב. לפולינום המינימאלי של A יש אותם גורמים אי-פריקים כמו לפולינום האופייני של A.
אחרי חישוב נקבל ש- <math>A-I)(A-2I)\neq 0  </math> כלומר, לא קיים פולינום ממעלה נמוכה יותר מזו של הפולינום האופייני של A  
+
אחרי חישוב נקבל ש- <math>(A-I)(A-2I)\neq 0  </math> כלומר, לא קיים פולינום ממעלה נמוכה יותר מזו של הפולינום האופייני של A  
 
שיש לו אותם גורמים אי-פריקים שמאפס את A. הפולינום האופייני של A הוא פולינום מתוקן ומהמעלה הנמוכה ביותר שמאפס את A (לפי משפט קיילי-המילטון).
 
שיש לו אותם גורמים אי-פריקים שמאפס את A. הפולינום האופייני של A הוא פולינום מתוקן ומהמעלה הנמוכה ביותר שמאפס את A (לפי משפט קיילי-המילטון).
 
לכן הפולינום המינימאלי של A הוא <math>m_{A}(x)=f_{A}(x)=(x-1)^{2}(x-2)</math>
 
לכן הפולינום המינימאלי של A הוא <math>m_{A}(x)=f_{A}(x)=(x-1)^{2}(x-2)</math>

גרסה מ־09:05, 4 בינואר 2012

א. אחרי חישובים נקבל שהפולינום האופייני של A הוא f_{A}(x)=\left | xI-A \right |=(x-1)^{2}(x-2)

ב. לפולינום המינימאלי של A יש אותם גורמים אי-פריקים כמו לפולינום האופייני של A. אחרי חישוב נקבל ש- (A-I)(A-2I)\neq 0  כלומר, לא קיים פולינום ממעלה נמוכה יותר מזו של הפולינום האופייני של A שיש לו אותם גורמים אי-פריקים שמאפס את A. הפולינום האופייני של A הוא פולינום מתוקן ומהמעלה הנמוכה ביותר שמאפס את A (לפי משפט קיילי-המילטון). לכן הפולינום המינימאלי של A הוא m_{A}(x)=f_{A}(x)=(x-1)^{2}(x-2) ג. הע"ע של A הם שורשי הפולינום האופייני של A, שהם 2 ו-1.

ד. נגדיר k_{\lambda }-הריבוי האלגברי של ע"ע למדה ו-m_{\lambda } הריבוי הגיאומטרי שלו. הריבוי האלגברי של ע"ע למדה מוגדר בתור האינדקס הגדול ביותר k שעבורו (x-\lambda)^{k} מחלק את הפולינום האופייני של A. לכן, k_{1}=2 k_{2}=1 הריבוי הגיאומטרי של כל ע"ע קטן או שווה לריבוי האלגברי שלו וגם גדול או שווה ל-1. לכן, 1\leq m_{2}\leq 1\Rightarrow m_{2}=1 הריבוי הגיאומטרי של ע"ע מוגדר בתור המימד של המרחב העצמי המתאים לע"ע זה. לפיכך,             m_{1}=dimN(A-I)=dimN\begin{pmatrix}
0 &1  &1 \\ 
0 &0  &1 \\ 
0 &0  & 1
\end{pmatrix}=dim(Sp\left \{ e_{1} \right \})=1

ה.הפולינום האופייני של A מתפרק לגורמים ליניאריים, ולכן קיימת צורת ז'ורדן ל-A. מס' הבלוקים הקשורים לכל ע"ע שווה לריבוי הגיאומטרי שלו, ולכן לכל אחד מהע"ע יש בלוק אחד. A היא מסדר 3, ולכן צורת הז'ורדן שלה היא מסדר 3, והיא מכילה בלוק מסדר 2 ובלוק מסדר 1. הסדר של הבלוק הגדול ביותר (ובמקרה זה, גם היחיד) של כל ע"ע למדה הוא החזקה של הגורם (x-\lambda) בפולינום המינימאלי של A. לכן, הבלוק הקשור לע"ע 2 הוא מסדר 1 והבלוק הקשור לע"ע 1 הוא מסדר 2. לסיכום, צורת הז'ורדן של A היא    
 J=J_{2}(1)\oplus J_{1}(2)=\begin{pmatrix}
1 &1  &0 \\ 
0 &1  &0 \\ 
0 &0  &2 
\end{pmatrix}