שינויים

שדות - תכונות בסיסיות

נוספו 1,923 בתים, 10:54, 25 בנובמבר 2011
== תרגילים - כדי לראות שהבנתם עד עכשיו ==
'''תרגיל:''' תהי <math>L/F</math> הרחבת שדות ו-<math>a_1,\ldots,a_n\in L</math> אלגבריים מעל <math>F</math>. הראו כי <math>F[a_1,\ldots,a_n]</math> שדהוהמימד שלו מעל <math>F</math> סופי. הראו כי זה תת השדה הקטן ביותר המכיל את <math>F</math> ואת <math>a_1,\ldots,a_n</math>. (הערה: <math>F[a_1,\ldots,a_n]</math> מוגדר באופן אינדוקטיבי ע"י <math>F[a_1,\ldots,a_n]=F[a_1,\ldots,a_{n-1}][a_n]</math>. קיימות גם הגדרות שקולות אחרות.)
'''תרגיל:''' תהי <math>L/F</math> הרחבת שדות, <math>a_1,\ldots,a_n\in L</math> אלגבריים מעל <math>F</math> ו-<math>F\subseteq K\subseteq L</math>. הוכיחו כי הקומפוזיטום של <math>F[a_1,\ldots,a_n]</math> ו-<math>K</math> הוא <math>K[a_1,\ldots,a_n]</math>.
'''דוגמא:''' לפי מה שעכשיו הראינו, אוסף האיברים האלגבריים מעל <math>\mathbb{Q}</math> ב-<math>\mathbb{C}</math> הוא שדה. (למעשה, זה הסגור האלגברי של <math>\mathbb{Q}</math>.)
 
'''דוגמא:''' יהי <math>F</math> שדה ויהי <math>K=F(t)</math> (שדה השברים של <math>F[t]</math> = שדה הפונקציות הרציונליות במשתנה <math>t</math>). אזי האיברים האלגבריים מעל <math>K</math> הם רק השדה <math>F</math>.
 
'''טענה:''' יהיו <math>F\subseteq K\subseteq L</math> שדות כך ש-<math>K/F</math> הרחבה אלגברית. אזי איבר <math>a\in L</math> הוא אלגברי מעל <math>K</math> אם ורק אם הוא אלגברי הוא אלגברי מעל <math>F</math>.
 
'''הוכחה:''' כוון אחד ברור מאליו -- אם <math>a</math> אלגברי מעל <math>F</math> אז הוא גם אלגברי מעל <math>K</math>. הכוון השני לא טריוויאלי. נניח ש-<math>a</math> אלגברי מעל <math>K</math> אזי קיים פולינום <math>0\neq f(x)\in K[x]</math> כך ש-<math>f(a)=0</math>. יהיו <math>b_0,b_1,b_2,\ldots,b_n\in K</math> מקדמי הפולינום <math>f</math>. היות ו-<math>K/F</math> הרחבה אלגברית, אז כל האיברים <math>b_0,b_1,\ldots,b_n</math> אלגבריים מעל <math>F</math>. לכן, לפי תרגיל מקודם, <math>K_0=F[b_0,\ldots,b_n]</math> הוא שדה ממימד סופי מעל <math>F</math>. בנוסף, <math>f(x)\in K_0[x]</math> ולכן <math>a</math> אלגברי מעל <math>K_0</math>. לפי טענה ממקודם, זה אומר ש-<math>[K_0[a]:K_0]<\infty</math>. לכן <math>[K_0[a]:F]=[K_0[a]:K_0]\cdot [K_0:F]<\infty</math>. לפי מסקנה מקודם, זה אומר שההרחבה <math>K_0[a]/F</math> אלגברית ולכן <math>a</math> אלגברי מעל <math>F</math>.
 
'''הערה:''' בהוכחה היינו צריכים להגדיר את <math>K_0</math> כי לא היה נתון ש-<math>[K:F]<\infty</math>.
485
עריכות